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Extremely Low Threshold Current Density in
(111)-Oriented GaAs/AlGaAs Quantum Well Lasers
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High quality (111)-oriented GaAs/ArGaAs quantum welrs lgws) with the smooth
heterointerface comparable to conventional (100)-eWs have been grown by mo-
Iecular beam epitaxy on (111)B-GaAs sr:bstrates by adapting the misorientation
of 0.5o- Near-id.eal 1ow threshold current density Jgl has been attained for(111)-oriented graded-index separate-confinement-hetdiostructurg single eWIasers in which^Jth almost unchanges for well widths of 30-100 i. The lowest
Ja6 of t45 A/cmz achieved for 490-pm long device is lowest ever reported for
semiconductor lasers.

1. Introduction

Quantum wells (eWs) and superlattices
are very important for novel device applica-
tions and for basic physics studies. These

modulated semiconductor structures are based

on the one-dimensional modulation of elec-
tronic band. structure along the growth axis.
Thus fundamental properties of these struc-
tures are believed. to change with their crys-
tal orientation. However, most of modulated

semiconductor structures have been grown on

(100) -oriented substrates until recently.
There are a few reports on the growth of

B-3-2

(111)-orienLed QWs is higher than (1OO)-eWs

by more than one ord.er of magnitud,e, and the
threshold current densitV J* of (111)-eW

Iasers is reduced compared with (100)-orient-
ed ones. In this paper, near-ideal 1ow Jan
in (111)-QW lasers are presented.

2. why (111) ?

In ord,er to test the orienLation depend-
ence of quanturn size effect, r^re selected. the
(111) orientation because the effect of the
largest anisotropy in the atomic configura-
tion was expected for (111)-oriented eWs. In
Fig.1 are shown crystal models of GaAs/AIAs

QWs for (100) and (111) orientations. In
(100)-QWs, [OtO] and [OOt] axes equivatent ro
the IfOO]-growth-axis lie in the eW plane,
and. thus the atomic configuration is isotrop-
ic. By contrast, ln (111)oews, the atomic
configuration is extremely anisotropic with
respect to the growth axis and directions
parallel to the heterointerface; there are no

axes equivalent to the lttt]-growth-axis in
the QW plane. Therefore we can expect dif-
ferent properties based on the one-dimension-
al quantization for (100)- and (111)-oriented,

GaAs/AlGaAs heterostructures on

( 110) -oriented substrates (N>1)

(N11) - and
L) '2) *o d"-

pendence of quantum effects on the orienta-
tion is reported except, ttre effect of the
strain-induced polarization field theoretical-
1y calculated for (111)-oriented. strained-
rayer superlattices. 3)

Recently we have succeed.ed. in the molec-
lar beam epitaxial growEh of high quality
GaAs/AlcaAs Qws on (111)B-oriented substrates
by very slight,ly (0.5o) misorienting the sub-
strate orientatiorr.4) As a resultr w€ found
that, the photoluminescence (pL) efficiency of
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QWs.

3. Photoluminescence Study

Sarrples were grown by uen (RIBER 2300)

on Si-doped GaAs substrates with the orienta-
tions of (100) and (111)8 misoriented by 0.5"

toward. (100). Details for crystal growth are

reported brsewhere.4)'5)

To assess the smoothness of heterointer-
face, four GaAs QWs with different well width

L- separated by 5OO-A thick A1^ .Gd", ,As bar-z u.J v.t
riers were successively grown. PL spectra

were measured at, 10 K by excitation with
5!4.5-nm light from an Ar* ion laser with the

)
excitation density of 0.05 rtl/cm-. PL spectra

shown in Fig.2 demonstrate that the hetero-

interface of (111)-QWs is as smooth as that

of (100)-QWs. For 50-i wide wells, the line

width of 5 meV in (111)-QW is only slightly

Iarger than that of 4.2 meV in (100)-QW.

Detailed study on the interface disorder in
(111)-QWs wirl be reported, elseth"t".5) Even

at 10 K, where the carrier reeornlcination pro-

cesses competing with the rad.iative recornbi-

nation in QW is lower than those at room tem-

perature, the PL intensity of (ttl)-QWs is at

Fig.1, Crystal- mod.els of GaAs/AlAs quantum

well for grorrth axes of [100] (Ieft) and

I ttf l trigtrt; . Large white spheres repre-

sent €a, and large and small black ones rep-

resent Al and As respectively. TVo monolayer

,thick GaAs is sandwiched by AlAs.

least several times higher than that in
(100)-QWs. This indicates the enhancement

of optical transition rate in (111)-QWs com-

pared with that of (100)-Qw".4)

4. Quantum WeII Lasers

Graded-index separate-conf inemenL-

heterostructure (GRIN-SCH) GaAs single quan-

tr-rrn well (SQW) lasers with different L_ in the

range of 15-300 i t"t" grown on (1OO)1 
"no

0.5o-misoriented (111)B-substrates. A GaAs

SQW was sandwiched by 0.15-Um thick O1*G.1_*

As GRIN layers in which x was varied from 0.2

to 0.7. A compositionally graded buffer la-
yer (CGBL) was inserted under the first clad-
ding layer to improve the quality of A1,.,

Gd^ .As clad.dins tu.y"t.7) ;;;:"t.- t3;1"-U.J
PeroL lasers with a cavity length of 490 pm

and 'a width of t2O-20O um were fabricated.
For randomly selected devices from one or two

bars, the light. output-current curves were

measured and the Jth was calculated by mea-

1.5 1.6 1.7 1.8

PHOTON ENERGY (EV)

FLg.2, Photolirminescence spectra at 10 K of
samples with four GaAs quantum wells grown

on 0.Su-misoriented (111)B- and (100)-GaAs

substrates aE 720 oC.
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suring the actual area of each device using
an optical microscope.

Figure 3 shows Jth ." a function of L,,

for (100)-oriented devices. Compared wittr
previousry reported, resultsrB)-11) Jan in the
present study is lowest in the whole range of
L-, which demonstrates the highest quality ofz'
material grown under our opLimized conditions

E\ 7l
by using a CGBL .-' ' ' ' Distributions of J*
in devices with L =70 i for (111)- and (100)-

z
orientaLions are shown in Fig. . The averagre

J-,- of L76 e,/cm2 for the (111) orientation is
E.II

about 20 e/cm2 lower than that of L96 n/cm2

for the (100) orientation. For L->100 i, it
z=

was found ttrat there is no differenee tr 
"an

for both (111) and (100) orientations. By

contrast, for L-<100 i, the J.. of (111)-ori-zEn
ented lasers is lower than that of (100)-ori-
ented ones as shown in Figr.S. It shoutd be

noted that t*re J* of (111)-devices is almost

constant within 160+5 A/cmo in the range of
L_=30-100 A. This dependence of J-, on L_ isztnz
consistent with the theoretical calculation
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Fig.4, Distribution of threshold current den-

sity of GRIN-SCII SQW lasers with f-,-=70 Iz
grown on substrates oriented: O.So-misorient-
ed (111)B (upper) and and, (100) (lower).
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Fig.S, Ttrreshold current, density of GRIN-

SCII SQW lasers as a function of well width
(r,rSfOO i,) for (1OO) and (111) orientations.
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Fig.3, Ttrreshold current density of
oriented. (GRIN-) SCII SQW lasers as a
of well width.
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by Sugimur uL2) for the case that, aLl carriers
injected into the QW region contribute to the
stimutated recombination between ground

states of electrons and hevy-holes; thus the
ideal extreme. The abrupt increase in J*
for L <:O i is considered to result from thez
loss of quantum confinement of carriers. By

increasing the AIAs mole fraction in the
cladding layers from 0.7 to-0.85r the Jan is
f.urther reduced, to 1,45 A/cmz in a (111)-ori-
ented d.evices with L-=50 i .= plotted in Fig.

z
5. Ttris is the lowest Jth ever reported for
semiconductor lasers with a similar cavity
length.

5. Conclusion

It is shown that, high quality caAs/

AIGaAS QWs with the smooth heterointerface
comparable to those on conventional (100)-

substrates cElrl,be grown on (111)B-GaAs sub-

strates by adapting the misorientation of
0.5o. The J-- of (111)-oriented GRIN-SCH SQW

EIT

lasers is reduced for Lz<100 i .o*pu.red with
that of (100)-oriented ones, and it almost

unchanges for L-=30-100 A, which correspond,sz
to the ideal extreme. The lowest J.. of t45

rEfl
A/cm' achieved for a 490-Un long device is
lowest, ever reported for semiconductor lasers.
We are convinced that these improvements

arise from the enhancement of optical transi-
tion in (111)-oriented QWs compared with
(100) -QWs. The one-dimensional quantization
along the [tft] axis will inprove perform-

ances in all kinds of opti-ca1 devj-ces based

on the quanturn size ef,fect, such as modulaL-

ors, switches, and bistable devices with the

QW region. llhe d.etailed study on basic pro-
perties of (111)-oriented QWs is noro underway.
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