Extended Abstracts of the 19th Conference on Solid State Devices and Materials, Tokyo, 1987, pp. 507-508

Annihilation Effect of High Concentration Oxygen Atoms on Secondary Defects in As⁺-Implanted Si

M. Tamura and M. Horiuchi Central Reserch Laboratory, Hitachi Ltd., Tokyo 185, Japan

For source and drain formation in MOS devices, high dose As⁺ ion implantation through SiO₂ films has generally been employed. During this implantation process, knoked-on oxygen atoms into Si subtrates strongly interact with the defects introduced by As⁺ implantation. This interaction increases with increasing As⁺ ion dose or increasing screen oxide films under device fabrication conditions. Eventually, the disorders after annealing through-oxide As⁺-implanted samples severely remain in implanted layers for conventional source and drain formation process¹. However, in the present experiment, it was found that, under certain conditions, a high concentration of oxygen atoms has an annihilation effect on secondary defects in high dose As⁺-implanted (100) Si.

When high dose As⁺-implanted (100) Si is annealed at temperatures between 600 and 900°C, secondary defects remain at two different depths as shown in Fig. 1. One type of defect (type 1) exists at the As⁺ ion range, R_p, and arises as a result of the precipitates due to the high concentration As atoms at R_p. The other type (type 2) remains at the interface between the original amorphous layer formed by As⁺-implantation and the underlying Si substrates. Table 1 summarizes the results of such secondary defect formation and the characteristic change in the defect type by annealing under the present experimental conditions. It is noteworthy that in through-oxide samples implanted with 2 x 10¹⁶ As⁺/cm², type 1 defects are annihilated and completely disappear after annealing at 1000°C. SIMS measurements revealed that high concentration oxygen atoms above 1 x $10^{20}/cm^3$ are introduced into the region from the Si02/Si interface to the As⁺ion range depth. Therefore, it can be expected that the formation of As-rich precipitation will be retarded by As-0 bonding as recently suggested by Celler et al.² and stable defects will not be formed in the As⁺ ion range after annealing.

In order to verify this defect annihilation result, a double implantation experiment was performed using As⁺ and O⁺ ions. First, As⁺ ions were implanted with a dose of 2 x 10¹⁰ As⁺/cm² into bare Si at 80 keV ($R_p^{\sim}480$ Å), followed by 22 keV oxygen ($R_p^{\sim}480$ Å) ion implantation with doses between 5 x 10¹³ and 5 x 10¹⁵ O⁺/cm². Typical cross sectional TEM (XTEM) and plan view TEM results are shown in Fig. 2 after annealing for 15 min at 950°C. As clearly seen from the figure, the residual defect structures and depth distributions vary depending on oxygen dose. At a dose of 5 x 10¹⁵ O⁺/cm², only type 2 defects remain. This suggests again that the existence of high concentration oxygen atoms effectively acts to annihilate type 1 defects by saturating the arsenic bonds with oxygen. Moreover, high temperature heat treatment resulted in complete elimination of all defects in doubly 2 x 10¹⁶ As⁺/cm² and 5 x 10¹⁵ O⁺/cm² implanted layers as shown in Fig. 3, although the defects did not disappear for the 2 x 10¹⁶ As⁺/cm² implanted samples with lower oxygen doses.

References

- For example; W. K. Chu, N. Muller, J. W. Mayer and T. W. Sigmon, Appl. Phys. Lett. 25 (1974) 297.
- 2) G. K. Celler, L. E. Trimble, K. W. West, L. Pfeiffer and T. T. Sheng; Appl. Phys. Lett. 50 (1987) 664.

Fig. 1 XTEM micrograph showing two different defect types remained in 80 keV, $5 \ge 10^{15} \text{ As}^+/\text{cm}^2$ implanted (100) bare Si followed by 800°C, 15 min annealing. <u>Table 1</u> Summary of the characteristic change of residual defect types by annealing under the present implantation and annealing conditions. 1 and 2 correspond to the defect type in Fig. 1, respectively. All the implantation was carried out at 80 keV.

Impl. Dose (/cm ²)	5 x 10 ¹⁵	2 x 10 ¹⁶	5 x 10 ¹⁵	2 x 10 ¹⁶
Anne. Temp. (°C)	bare		180 Å SiO ₂ through	
800	1 2	1 2	1 2	2
950	2	1 2	1	2
1000	no	1	1	no

Fig. 2 Plan view TEM (upper part) and corresponding XTEM (lower part) micrographs showing defect structure variations with 22 keV, implanted oxygen doses in 80 keV, 2 x 10^{16} As⁺/cm² implanted (100) bare Si followed by 950°C, 15 min annealing. (a) 5 x 10^{13} 0⁺/cm², (b) 5 x 10^{14} 0⁺/cm² and (c) 5 x 10^{15} 0⁺/cm² implantation.

Fig. 3 Plan view TEM micrographs of defect remaining and disappearance after 1000°C, 15 min annealing of Fig. 2(b) and (c) samples. (a) Fig. 2(b) sample and (b) Fig. 2(c) sample.