Extended Abstracts of the 19th Conference on Solid State Devices and Materials, Tokyo, 1987, pp. 215-218

C-3-6

Highly Reliable Ta₂O₅/SiO₂ Double Dielectric Films on Poly Crystalline Silicon

H. SHINRIKI, Y. NISHIOKA AND K. MUKAI

CENTRAL RESEARCH LABORATORY, HITACHI, Ltd., KOKUBUNJI, TOKYO 185, JAPAN (0423)-23-1111

Highly reliable Ta_2O_5/SiO_2 double dielectric films on poly-Si, having an effective film thickness of $4 \sim 5 \text{ nm SiO}_2$, are developed. The bottom SiO_2 is grown by dry oxidation through reactively sputtered Ta_2O_5 film at temperature higher than $800^{\circ}C$. The growth rate of the bottom SiO_2 is controlled by the diffusion of oxydant through Ta_2O_5 film, so that the uniform oxidation is performed resulting in high quality bottom SiO_2 . The TDDB characteristics show that these double dielectric films with thinner bottom SiO_2 are more resistant to breakdown. Films with 2nm bottom SiO_2 on single crystalline Si and have a low leakage current of $10^{-8}A/\text{ cm}^2$ at 5MV/cm.

INTRODUCTION

As the level of integration in VLSI's become increasingly higher, the area of capacitors become correspondingly small. However, this reduction in capacitor area reduces capacitance, leading to lower reliability of memory devices. To overcome this limitation, three-dimensional device structures, such as trenched or stacked type capacitors have been proposed to reduce memory cell area (1, 2). At the same time, a means has already been proposed in which an oxide of a transition metal having a relatively large dielectric constant is employed as the dielectric film in the capacitor in order to prevent lowering of capacitance(3).

It is clear that the application of dielectric film with a large dielectric constant to three dimensional devices is expected to greatly reduce the memory cell area. However, the dielectric film of three dimensional devices must be formed on poly-crystalline silicon (poly-Si) film. Hence, high reliability must also be ensured in the application of dielectric film with large dielectric constant, such as Ta_2O_5 .

SAMPLE PREPARATION

The fabrication process of the W-gate/ $Ta_2O_5/SiO_2/poly-Si$ capacitor investigated in this work is shown in Fig. 1(a-c). In (a), a poly-crystalline silicon film is deposited on a (100) n-type Si wafer. The film is then heavily doped with phosphorus.

Next, amorphous Ta₂O₅ films ranging in thickness from 2nm to 20nm are deposited by reactive RF sputtering using an Ar/O, of Ta₂O₅ At the beginning mixture. the surface of the poly-Si is deposition, exposed to Ar/O, plasma, and extremely thin SiO, film is grown on the poly-Si film (4). In (b), annealing is performed at high temperature (800, 850, 900, 950, or 1000°C) in dry oxygen in order to ensure complete oxidation and induce SiO₂ growth at the Ta₂O₅/poly Si interface. In (c), W film for the upper electrode is finally deposited after these dielectrics are formed.

SiO₂ GROWTH AT Ta₂O₅/POLY Si INTERFACE

Fig. 2a and 2b show the cross sectional transmission electron micrograph (TEM) of the Ta₂O₅(7. 5nm)/SiO₂ films and Ta₂O₅(3nm)/SiO₂ films on poly-Si respectively, which were oxidized in dry oxygen at 850℃. An increment is observed in the bottom SiO₂ and the bottom layer is estimated be 2. 5nm the to at Ta₂O₅(7.5nm)/poly-Si interface in (a), and 4nm at the Ta₂O₅(4nm)/poly-Si interface in

b

a

$\begin{array}{rl} Ta_2O_5/SiO_2 & Ta_2O_5/SiO_2 \\ = 7.5/2.5nm & = 3.0/4.0nm \end{array}$

Fig. 2 Cross sectional TEM image of Ta_2O_5/SiO_2 films (scale is 10nm) (a) $Ta_2O_5(7.5nm)/SiO_2$ after dry O_2 at $850^{\circ}C$ for 30 mins. (b) $Ta_2O_5(3nm)/SiO_2$ after dry O_2 at $850^{\circ}C$ for 30 mins.

Fig. 3 SiO_2 thickness at Ta_2O_5 /poly Si interface after dry oxidation as a function of Ta_2O_5 thickness with annealing temperature as a parameter.

(b). This result shows that the increment in SiO_2 at the interface between Ta_2O_5 and poly-Si, as well as at the interface between Ta_2O_5 and single crystal Si (cry-Si)(5), depends on the thickness of the Ta_2O_5 film.

Fig. 3 shows the influence of Ta₂O₅ thickness on SiO, growth at the Ta₂O₅ /poly-Si interface and at the Ta₂O₅ /cry-Si interface, with annealing temperature as a The thickness of the bottom SiO, parameter. is evaluated by the change in capacitance before and after annealing. As is clear from the figure, as the thickness of the Ta₂O₅ film decreases, the thickness of the bottom SiO₂ formed thereunder increase This suggests that the growth rapidly. mechanism of the bottom SiO₂ can be regarded as diffusion controlled growth of which the diffusion coefficient is that of the oxydant in Ta₂O₅ film.

DEFECT DENSITY REDUCTION

Fig. 4 shows the defect density of double dielectric films on poly-Si, comparing with thermally grown SiO_2 on cry-Si and on poly-Si. In this paper, the effective film thickness(ts) and effective

Fig. 4 Defect density of Ta_2O_5/SiO_2 films compared with that of SiO_2 on poly-Si and on single silicon.

field(Es) were calculated using a dielectric constant of 3.82 for SiO_o. Dry oxidation reduces the defect densities of the double dielectric films to less than 0. 2/cm², from $100 / cm^2$. This defect density of the double dielectric films is one tenth as large as that of thermally grown SiO₂ on cry-Si and is far less than that for the thermally grown SiO₂ on poly-Si in the region of 4~ 5nm effective film thickness. One of the reasons for such a low defect density is that at weakspots where the Ta_oO_s thickness is locally thin, the bottom SiO, thickness selectively increases on poly-Si as well as on cry-Si(5).

TDDB CHARACTERISTICS

Fig. 5 shows the results of the time dependent dielectric breakdown (TDDB) characteristics extrapolated to the long reliability of Ta₂O₅/SiO₂ double term dielectric films on poly-Si. Fig. 5 shows that electric field dependence of the time to 50% failure for Ta₂O₅(7.5nm)/ $SiO_{2}(2 \sim 4nm)$ double dielectric films on poly-Si, with the bottom SiO₂ thickness as a parameter, compared with thermally grown

Fig. 5 Dependence of TDDB characteristics on SiO_2 thickness at Ta_2O_5/SiO_2 interface compared with SiO_2 on single Si and on poly-Si.

SiO₂(4nm) on cry-Si. As can be seen in Fig. 5, the time to 50% failure increases as the thickness of the bottom SiO, decreases for the same electric field and as the thickness of the bottom SiO, reaches 4nm. the time to failure of the films become the same as that of 4nm thermally grown SiO_2 on $Ta_2O_5(3nm)/SiO_2(4nm)$ cry-Si. double dielectric films on poly-Si also exhibit TDDB characteristics similar to that of 4nm thermally grown SiO, on cry-Si.

These results suggests that the lifetime to breakdown of the double dielectric films is controlled by the lifetime of the bottom SiO₂. In a recent investigation of the TDDB characteristics of extremely thin thermally grown SiO, on cry-Si(6), it was clarified that as the thickness of SiO₂ on cry-Si was reduced to less than 5nm. the lifetime to breakdown greatly increased. Accordingly, by setting the thickness of the bottom SiO, film to be thinner within practical limit for defect density, highly reliable dielectric film can be obtained. When the thickness of the bottom SiO, is fixed at about 2nm. the lifetime to breakdown of double dielectric film is more than 4 decades longer than that of thermally grown SiO_2 on cry-Si in the $4 \sim 5$ nm effective film thickness region.

CONDUCTION PROPERTIES

Fig. 6 shows the J-E characteristics of the double dielectric films in which the thickness of the bottom SiO, is fixed at about 2nm. and the effective film thickness is 3, 4 and 5nm. These J-E characteristics are compared with thermally grown 3, 4, and $5nm SiO_2$ on cry-Si and the thermally grown 6nm SiO₂ on poly-Si. This figure shows that even in the $4 \sim 5 \text{nm}$ effective film thickness region, a leakage current of 10⁻⁸ A/cm² can be obtained at 5MV/cm. of which current is as same as the leakage current of the double dielectric films formed on cry-Si. These results suggest that the quality of the bottom SiO₂ on poly-Si is not inferior to the bottom SiO₂ on formed on cry-Si. As is well known, the thickness of thermally grown oxide on poly-Si varies considerably over the wafer surface due to the difference in the growth rate of the various crystal faces. However, the bottom SiO, in

 Ta_2O_5/SiO_2 system is grown with diffusion controlled oxidation, as mentioned before, so that local variations of growth rate seem to be lost and uniform oxidation occurs. This uniform oxidation inhibits the generation of asperities.

CONCLUSION

In the region of $4\sim 5 \text{nm}$ effective film thickness, $\text{Ta}_2\text{O}_5/\text{SiO}_2$ double dielectric films are shown to have low defect density, sufficient TDDB reliability and low leakage current. This double dielectric films with thinner bottom SiO_2 is more resistant to breakdown. These films with about 2nm bottom SiO_2 , of which the effective film thickness is $4\sim 5 \text{nm}$, have more than 4 decades longer lifetime to breakdown than thermally grown SiO_2 on single crystalline Si and have a leakage current of less than 10^{-8}A/cm^2 at 5MV/cm.

ACKNOWLEDGMENTS

The authors wish to thank Noriyuki Sakuma for his assistance in depositing the film and measuring the electric characteristics of the capacitors, and Teruho Shimotu for the TEM measurements.

Thanks are also due to Yuzuru Ohji and Takahisa Kusaka for their stimulating discussions.

REFERENCE

- M. Koyanagi, et al., IEDM. Tech. Dig., p348, 1978.
- (2) H. Sunami, et al., IEEE Trans. Electron Devices, Vol. Ed-31, p746, 1984.
- (3) K. Ohta., IEEE Trans. Electron Devices, ED-29, p368, 1982.
- (4) Y. Nishioka et al., J. Electrochem. Soc., vol. 134, p412, 1987.
- (5) Y. Nishioka et al., IEDM. Tech. Dig., p42, 1985.
- (6) T.Kusaka et al., abstracts of 18th SSDM p463 1986.