Conductive E-Beam Resist

H. Watanabe and Y. Todokoro
Kyoto Research Laboratory, Matsushita Electronics Corporation
Kyoto 601, Japan

Conductive E-Beam Resist, CER has been developed. CER consists of ammonium poly (p-styrene sulfonate), AmSS which has ion conductivity. CER is negative working upon irradiation with e-beam. The sensitivity is 110 μC/cm² and the contrast value (γ) is 1.5. The sheet resistivity of 2 μm CER is about $10^8 \Omega/\square$. The use of CER realizes a simple e-beam writing process on an insulating substrate. We have fabricated 1 μm lines and spaces on a quartz substrate by using CER.

1. Introduction

E-beam lithography has been widely used for mask fabrication and submicron device fabrication. One of the problems for e-beam lithography is charging. Buildup of residual electric charge causes pattern distortion and alignment error on an insulating substrate. Charging is also a problem for conductive substrate when the multilayer resist is used, since the electrons may not penetrate to a conductive substrate. Metal and silicon films were used to avoid these problems. However, a fabrication process of such films are not compatible with a lithographic process. And metal films would be potential sources of contamination.

This paper describes the Conductive E-beam Resist, CER, which eliminates the charging effect without an additional process.

2. Experimental

A. Material

CER consists of ammonium poly (p-styrene sulfonate), AmSS. The chemical structure of AmSS is shown in Fig. 1. AmSS is the salt of sulfon-styrene anion base and positively charged ammonium ion, and so AmSS has ion conductivity.

B. Process

CER was spun on to silicon or quartz wafers to give a nominal thickness of 0.5-2 μm, and baked in a convection oven at 100-300°C for 30 min. The wafers were exposed on an e-beam exposure machine at 25 kV. The exposed wafers were developed in water for 60 s. To compare the charging effects on an insulating substrate, AM-CMS (Toyo Soda) was used as the conventional, negative e-beam resist.

AmSS
Ammonium poly(p-styrene sulfonate)

\[-(CH_2-CH)n- \]
\[\text{SO}_3^- \text{NH}_4^+ \]

Fig. 1 Chemical structure of AmSS.
3. Results and discussion

Typical spin speed and film thickness curve for CER after baking at 200 °C is shown in Fig.2. The thickness of CER can be adjusted to produce coating of 0.2-2 µm thickness by changing the spin speed at different solid content. The refractive index of CER is 1.55.

Baking temperature effects on conductivity of CER have been studied. Figure 3 shows the resistivity of 2 µm CER film, changing the baking temperature as a parameter.

The sheet resistance of 2 µm CER baked at 200°C is 6x10⁷ Ω/□. The sheet resistance of CER increases gradually with the increase of baking temperature below 250°C, and increases rapidly above 250°C.

A sensitivity curve of CER prebaked at 100, 120, 150, 200°C on a silicon substrate is shown in Fig.4. The sensitivity of CER baked at 200°C is 110 µC/cm² and the contrast value γ is 1.5. The sensitivity decreases with decreasing the prebake temperature. The sensitivity and contrast value are summarized in Table 1.

Figure 5(a) shows the typical failure of resist patterns caused by e-beam charging on insulating substrate. The patterns are written in 0.5 µm aM-CMS at a dose of 35 µC/cm² on a quartz substrate. The patterns are deformed due to charging of e-beams. On the other hand, the use of CER prevents charging effects as shown in Fig.5(b). The patterns are written in 0.5 µm CER on a quartz substrate at a dose of 250 µC/cm². Patterns without distortions are delineated on a quartz substrate.

Figure 6 shows the lines and spaces patterns in 0.5 µm CER on a quartz substrate. Minimum lines and spaces of 1 µm are fabricated. Resist edge profiles of 2 µm lines and spaces in CER on a quartz substrate are shown in Fig.7. By using CER, fine patterns can be delineated on an insulating substrate.

4. Conclusions

Conductive e-beam resist, CER has been developed. The performance characteristics of CER have been described. CER has both conductivity and e-beam sensitivity. The sheet resistance of 2 µm CER is about 10⁸ Ω/□. The sensitivity is 110 µC/cm² and 1 µm lines and spaces are fabricated in CER.

CER eliminates the charging effects, while retaining the simplicity and cost effectiveness of conventional processing. CER has wide applicability for e-beam mask fabrication and direct wafer writing on an insulating substrate.

Acknowledgments

The authors would like to thank Dr. T.Tamai, H.Iwasa, and Y.Yaegashi for their encouragement and useful discussions.

Table 1. Sensitivity and contrast value

<table>
<thead>
<tr>
<th>Prebake temperature (°C)</th>
<th>Sensitivity (µC/cm²)</th>
<th>Contrast value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>690</td>
<td>0.9</td>
</tr>
<tr>
<td>120</td>
<td>340</td>
<td>1.4</td>
</tr>
<tr>
<td>150</td>
<td>180</td>
<td>1.5</td>
</tr>
<tr>
<td>200</td>
<td>110</td>
<td>1.5</td>
</tr>
</tbody>
</table>

References

Fig. 2 CER film thickness vs. spin speed.

Fig. 3 Resistivity of CER vs. baking temperature.

Fig. 4 Sensitivity curve of CER.
Fig. 5 Resist patterns in (a) CER and (b) aM-CMS on a quartz substrate.

Fig. 6 Lines and spaces in CER on a quartz substrate. Minimum lines and spaces are 1 μm.

Fig. 7 Resist edge profiles of 2μm lines and spaces in CER on a quartz substrate.