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Negative Differential Resistance Characteristics
Pseudomorphic Resonant Tunneling

1. Introduction
Great improvementsl-7) h..r" been made in

the negative differential resistance (UOn)

characteristi-cs of the resonant tunneling
barrier (Rtg) structure, since it was first
d.emonstrated in 1973 by Tsu and Esaki.S)
However, its characteristics, such as peak-
current density and peak-to-valIey current
ratio, are not yet of a high enough level to
a1low its application to new functional
devices, such as the resonant-tunneling hot
electron transistor (nffnfl9) and. the
resonant-tunneling bipolar transirto".l 0)

We reeently reported the barrier-width'11) .nd
well-width12) d.ependence of the NDR of
rnGaAs/rnAlAs RTB structures, lattice-matched.
to InP, and demonstrated. a NDR, much improved
over eonventional GaAs/A1*Ga1_*A, RTBs.
The potential barri_er height is another
lmportant parameter affecting RTB structures.
In fact, an i-mproved. room-temperature NDR of
GaAs/A1*Ga1_*As RTBs was achieved by Tsuchiya

"t af2), usi-ng an AlAs barrier layer. In
this paperr we report on our studies on the
effect of barrier height on the NDR

eharacteristics of fu0.53c" 0.47Ls/tn1 _*Al*As
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of an Ino.sl Gao.lr As/In1-, Al, As
Barrier Grown by MBE

Shigehiko SASA,

s-t-8

pseudomorphic RTBs.

2. Experimental

The In1 _*Al*As/fng. 53GaO.47As/In1 _*Al*As
pseudomorphi-c RTB structure was grown on a
,r*-IrrP (t OO) substrate at /+70"C by MBE.

Figure 1 shows a schematlc cross-section of
an It0.53G"0./u?A, /Inl-*Al*As RTB diode and
its energy band diagram. ft consists of a
Si-doped n- f n6 .53GaO./u?As ( t *t O1 8 

"*-3)1ayer, an undoped fn6.53Ga0./r7Ar spacer-1ayer
(f f i1, an und.oped fn1_*Al*As (x=0.6J 1 o.741
1) barrier-1ayer (g atomic layers)r an
undoped f r0.53G.0./uZAr well_-layer (15 atomic
layers)r -&o undoped In1-*Al*As (y=O.6J, 0.74,

Resonont stote
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In1-yAflAs (9 o.l.)
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Figure i Schematic cross-section of an

Ir0.53G. O.47As/In1 _*Al*As pseudomorpic RTB

grown on an rr+-IrrP substrate and its
energy band di-agram.
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We have studied the effect of barrier height on the negative
dif f erential reslstance characteristics of rro-q ?Gao^/. tAs/ tn,, _llr*Rs(0.65!x!1 ) pseudomorphie resonant tunneting u.rrY?//s ffffiJl g"ortr-6y fBE.
A peak-to-val1ey current (f,n/Jr,) ratig of 1t* (;OOlt; and 35 

-(ll]K) 
"itf, ahigh peak-current density (J.) of 2.3x1oa A/cnz was achieved. for a resonant

tunneling barrier structurd of Iro-s zGao-t,rAs (15 atornic layers)/Ai-As (g
atomic layers). These Jp/Jv val-"u'dJ ar'e'*61most three times larger thanthe largest tp/jr, :*i" t"t! _" compatible Jn observed. so far f or any RTBstructure at 5oth,300K and 77K.
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1) barrier-layer (g atomic layers)r an

undoped I*0.53G"0./*?A, spaeer-layer (15 fil
and a Si doped n-rng,53Gag,47As (t*t018 

"^-3)
1ayer. The n-InGaAs layers far from the RTB

were highly doped with Si to 2x1O19 "^-3, and

the top and bottom electrodes of the diodes
were f ormed. us ing Au non-alloyed ohmic

contacts. The thi ckne s s of the
pseudomorphie layer In1_*Al*As barriers
(about 2/r i for AlAs) is much less than the
eritical thickness (about 1 OO i for AlAs)

given by Matthewsl3) for the fornation of
misfit di-sl-ocati-ons in strained rnultilayers.

3. Results and Discussion

The current-voltage characteristics at
roon-temperature of the InO.53Guo.tn.Ar/AlAs
pseud.omorphi-e RTB structures are shown in
fi-gure 2. For the hO.53G.g.47As/A1As pseu-

domorphic RTB with a higher barrier height,
an excellent peak-to-val1ey current ratio of
1/+ wlth a peak-current densi-ty of 2.3x104

A/cn? was obtained at room-temperature, and

the peak-to-va1ley current ratio further
increased with decreasing temperature and

reached a maxinum of 35 at 77K with
Jo=2.3x104 l/c^2. The peak-to-va11ey eur-
reni ratio of the In0.53Gug.47As/A1As RTB is
the best obtalned for any RTB.

Figure 3 shows the dependence of the
peak-current densi-ty (Jr.,) and peak-to-va11ey
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Figure 2 Current-voltage eharacteristics
at 300K for an Ir0.53GaO./u7Ls/ltls
pseudomorpic RTB.

eurrent ratio (,fn/.f.,r) of the NDR region at
both 300K and 77K, as a functi-on of the x-
value of the In1 _*Al*As barrier layer. At

300K, the peak-current density decreases from

7.2-8.9x1o4 A/cn? to 1.7-2.7x104 A/cn? as the

x-val-ue increases from 0.65 to 1. However,

the Jp/Jv ratio increases linearly from 5.5-
6.1 to as high as 13.0-1/+.3 as the x-value
i-ncreases. The exeellent peak-to-vaIIey
current ratio at room-temperature can be

attributed to the large potential barrier
height at the InGaAs/In1 _*Al*As lnterface
because a higher barrier height is effective
in reducing the non-resonant, thermionic
component2) of the valley-current due to
thermally excited electrons both tunneling
through higher quantum levels and surmounting

the barrier. The peak-eurrent density
1s almost ind.ependent of the temperature.
The va11ey-current d.ensity, however, is
strongly temperature-dependent and the
resultant peak-to-valley current ratio
increased by 2-2.5 t,imes as the temperature
was decreased. to 77K. The reason for the
high peak-to-val1ey current ratio at 77K is
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Figure 3

o.5 0.6 0.7 0.8 0.9 t.o
AlAs mole frocllon, x

Peak-current d.ensity (Jo) and

peak-to-val1ey current ratio (.f,/,frr) of an

Ir0. 53GuO./n7As/In1 _*A1*As resonant
tunneli-ng barrier at 300K and 77K as

functi-on of the AlAs nole fraction, x.
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Figure /r

ro3 ro4 to5 to6
Pesk current density lAtcmzl

Peak-to-valley current ratio
in the negati-ve differential resistance
region of Ir0. 53GaO./o7As/In.,_*A1*As
pseudomorpic RTB at 77K as a function of
the peak-current densi-ty. Data for GaAs/

A1rG.1_*Ar and IrO.53GuO.4ZAs/
Ir0.52ALO./*gAs RTB structure is also
plotteds (A) after ref.213r/r; (f) after
ref . 5 ,6i (a) af ter ref .7 1 (O) af ter
ref.1 1112; (E) after ref.1d.

as yet not und.erstood. Although the large
barrier-height night sti1l be effective i-n

reducing the thermionic current at,77K, it is
hard to believe that the thermioni-c current
is the main component of the val1ey-current
at such a 1ow temperature.

Figure d shows the peak-to-valley current
ratio at 77K as a function of the peak-
current density observed. in Ing .53GaO./rZAs/
In1_*Al*As RTBs, compared. with previous data

of GaAs/Al-GaAs2-? '11) and rro.53G 
^0./o7Ar/

rng.52A10.4gAs1 1r12) RTBs. rt can been seen

that the InGaAs/AlAs pseudornorphie RTBs

exhibit both a remarkably high peak-to-valley
current ratio and a high peak-eurrent
densi-ty.

Our result indicates that the stress in
Ing.53GaO.t7As/llAs has no adverse effect on

the peak-to-valley current ratio. 0n the
contrary, the stress is expected to enhance

el-ectron tunneli-ng of the RTB through redue-

tion of both the el-ectron effective mass and

barrier height of the AlAs barrier 1ayer.

Table 1. Measured and calculated peak-

current density (1ru) of a pseud.omorphic

InGaAs/AlAs RTB structure with parameters

used for the ealculation.

Peak-current density (Jo)

Calcul-ated 2.2 x lo4 l/cn?

Measured 1.7-2.'7 x lo4 l,/en2

;;;;;;;;;---__
Conductlon-band di-scontinuity 1.20 eV
Electron effective mass (AlAs ) O.14.mn

(rncaAs) o.o4ztn
Barrier width 23.7 I"
Well- width /n/u.O A

If the stress at the InGaAs/RtRs i-nterface
due to a lattice-misnatch of 3.7% is acconmo-

dated completely by tensile strain i-n the
thin AlAs layers, the lattice constant
para1lel to the i-nterfaee, "'ife", is equal to

50
Ins.53Goe.a7Aslln1-rAlrAs RTB

77K

\x.o74
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a'tncaAs (=ar jp=5.86 f ).
constant in the z-direction (normal to the
interface)r "'AlAr, becomes 5./16 i by the
relation of (.uAlAr-aAlAs)/aRUs --2ClZ/ Cll.
("'if4r-aAlAs)/aRUs, where C1 1=1 .2O2x1012

dynef cmz, and C1 2=0.570x1012 dyne/cm? u". the
elastic stiffnesses of AlAs. Accordi-ng to
a tight-binding cal-culatlorl5), such strain
results in the lowering of the l'-band minimum

by 0.166 eV and a reduction in the electron
effective mass from 9.15m0 (ttre unstrained
case) to 0.14mg. The calculation also
indicates a raising of the X-band mi-ni-mum

near (0r0 r27,/a) uy 0.1{8 eV. By assuming a

eonduction-band (il diseontinuity of /E"=9.$

/tg (lEg=E[AlAs- E[r'crl s=3.03 ev-0.?6 ev=

2.27 eV) for the unstrained AIAs/InGaAs

interface, we obtained a much larger
potential barrier height of 1.2 eV for the P-
band. and 0.55 eV for the X-band, with an Al-As

barrier. Table 1 shows the peak-current
density, Jp, obtained Fy a simple resonant
tunneling calculation12) using the parameters

given above for an InGaAs/AlAs pseudomorphic

The lattice
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RTB. The cal-cul-ated Jo value of 2.2x104
A/cn? agrees well with the observed value of
1.7-2.7x104 Af cnz, in spite of the crude
assumpti-on used..

The strai-ned AlAs is still an indirect
band-gap materi-al, and recently the effect of
the indirect valleys of the AlAs barrier
layer has been pointed out for GaAs/AlAs

RTBs.16) It shoul-d be noted, however, that
the barrier height (0.65 eV) corresponding to
the indirect (x) AfRs va11ey in InGaAs/AlAs
RTBs is higher than that for GaAs/AlAs RTBs

(0.2 eV), primarily because of the narrower
band-gap of InGaAs. Thererfore we believe
that the tunneling current through the upper

va1ley becomes less for InGaAs/Alqs RTBs than
for GaAs/AlAs RTBs.

{. Sunnary

We studied. the effeet of barrier height
on the negative differential- resi-stance
characteristics of fn6.5 3GuO.tnTAs/In1 _*A1*As
pseud.omorphi-c RTBs, and found that a high
barrier-height plays an important role in
obtai-ning an exceed.ingly high peak-to-valley
current ratio, while naintaining a high peak-
current density, not only at 300K but also at
77k. Dramatically improved negative
differential resi-stance characteristics,
Jn/Jrr=14 with Jn=2.3x104 A/cm2 at 300K and
Jp/Jv=35 with Jn=2.3x104 A/cm2 at 77K, have
been obtained by preparing a large barrier-
height hO.53G.O./r?A" (lS atomic layers)/AlAs
(9 atomlc layers) pseud.omorphic RTB grown on

an InP substrate. These JO/J' values are
almost three tirnes l-arger than the largest
peak-to-va11ey current ratio with a

compatible peak-current density observed so

far for any RTB structure at both 77K and

300K.
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