Extended Abstracts of the 19th Conference on Solid State Devices and Materials, Tokyo, 1987, pp. 411-414

Silicided Shallow Junction Formation for Scaled-down CMOS Devices

Kiyonori OHYU, Tadashi SUZUKI, Nobuyoshi NATSUAKI and Yasuo WADA Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185 Japan

Rapid thermal annealing and silicidation conditions are discussed to minimize the leakage current of shallow implanted junctions for sub- μ m CMOS devices. A relatively low cooling rate of ~7°C/s as well as TiSi₂ formation after implantation/annealing have been found to be preferable to reduce the leakage current at the junction perimeter down to ~2x10⁻¹⁶ A/ μ m at a reverse bias of 5V. This is because increase in the surface recombination velocity or defect generation induced by stress at the perimeter can be avoided under the above condition. In addition, characteristics of MOSFET's are demonstrated with emphasis on the effects of a silicided source/drain thus formed.

1. Introduction

With the scale-down of CMOS devices, shallower and low resistivity source/drain junctions are required to maintain low junction leakage current. Shallow junctions have been obtained by effectively reducing the annealing temperature of the implanted layer. Rapid thermal annealing (RTA) technology is a very promising candidate for this reduction; however, thermal stress of RTA affects the leakage current at the perimeter of the junction¹⁾. On the other hand, low resistivity junctions have been obtained by a silicided layer. For example, TiSi, layer decreases sheet resistance by more than one order of magnitude as does conventional As doped layer²⁾. In addition, scaled-down junctions, with an area of less than $1 \mu m^2$, are required to reduce the perimeter leakage, because the perimeter-to-area ratio becomes larger as devices are scaled.

This paper describes a suitable process technology for the formation of source/drain regions, with shallow, low resistivity and low leakage current characteristics. In-

crease in leakage current due to low temperature annealing, RTA thermal stress and TiSi₂ formation are quantitatively discussed.

2. Experimental Procedures

A p-type, (100) oriented, $10 \, \Omega$ -cm Si substrate was formed with p-type and n-type well layers. Device isolation was performed by LOCOS with a p-type channel-stop layer. Ion implantation and annealing technology were used to fabricate n⁺ and p⁺ layers, as shown in Table 1. Conventional furnace annealing (FA) and RTA were utilized with controlled heating and cooling rates of about 4-50°C/sec above 600°C.

A TiSi₂ layer was formed by a selfaligned process utilizing RTA in N_2^{3} . An n⁺ or p⁺ junction is formed before or after TiSi₂ formation, as shown in Fig. 1. Further, annealing after TiSi₂ formation decreased the contact resistance between doped layer and TiSi₂³⁾.

The surface recombination velocity (S_0) was obtained from the relationship between

leakage current and the area of surface depletion region⁴⁾, measured on a gate controlled diode, as shown in Fig. 2.

3. Results and Discussions

Junction formation conditions, junction depth (x_j) and leakage current of the 5V reverse biased n^+/p junctions are shown in Table 2, where area component (J_a) and perimeter component (J_p) of the leakage current are indicated separately. These results are summarized as follows.

(1) J_a is small for junctions treated with long annealing time and having large redistribution of implanted As, as in results 1, 2 and 3. However, J_p hardly depends on the above conditions.

(2) J_p is large for RTA with rapid heating and cooling, as in results 1 and 4. And J_p is small for RTA with slow heating and cooling, as in results 4, 5 and 6. In particular, the effects of the cooling rate is large. Furthermore, J_a hardly depends on the heating and cooling rate at RTA.

Annealing conditions, x_j and leakage current of the -5V reverse biased P^+/n junctions are shown in Table 3. In the P^+/n junction, J_a is also small for large redistribution of implanted B, and J_p is small for a low heating and cooling rate. These experimental results clearly indicate that the cooling rate, rather than the heating rate, affects the leakage current and that J_p rather than J_a affects the total leakage current.

The relationship between J_p and S_0 was obtained on various junction formation conditions, as shown in Fig. 4. The extent of J_p depends almost linearly on the amount of S_o , which is attributed to deep trap levels due to thermal stress⁵. Therefore, in scaled devices, the control of deep interface traps is most essential to decrease the leakage current level.

Next, the results of TiSi, formation are described. The sheet resistance was decreased to $3 \sim 5 \Omega /$, and the x, of n⁺/p junction and P^+/n junction were about 180nm and 300nm, respectively. The dependency of J and J_p at $V_r = 5V$ on process conditions is shown in Fig. 3, where it is depicted that J and J_p did not increase if the TiSi₂ layer is formed after the n^+ or p^+ doped layer. This phenomenon is attributed to the increase in junction depth (X_j) by TiSi₂ formation as shown in Table 2. On the other hand, J_p and J_a increase when the n^+ or p^+ doped layer is formed after TiSi₂ layer formation. The increase in J_p at the n^+/p junction is especially attributed to the TiSi2 stress effect⁶⁾.

These experimental results indicate that J_a is affected by redistribution of implanted dopant, and that J_p is controlled by the stress induced surface state during annealing of the implanted layer.

MOS transistor characteristics fabricated by optimized process conditions are shown in Table 4. The drain breakdown voltage (BV_{ds}) was improved, and the ratio between drain current and substrate current (I_{sub}/I_d) was reduced by an optimum process sequence, which forms an n^+ or p^+ region after self-align TiSi₂ formation. On the other hand, decrease of I_{sub}/I_d and increase of mutual conductance (g_m) were obtained by TiSi₂ formation on an doped layer. These results are attributed to the decrease in leakage current and resistivity by TiSi2 formation. The shift of gate length (Δ L) was in proportion to x_j, and is decreased with a decrease in x j. RTA was effective in improving the p-channel device, for example, by increasing BV_{ds} or decreasing ⊿ L and I sub/I d.

4. Conclusion

The perimeter component leakage current which is important for a scaled-down junction, was found to be controlled by stress during annealing of the implanted lay-Moreover, for realization of titanium er. silicided shallow junction formation with low leakage, it was clarified that an n⁺ or p⁺ doped layer with good leakage current characteristics should be formed before TiSi, formation. The above effect was confirmed by a sub- μ m MOS device characteristics.

Reference

- H. Mikoshiba et al; Japan J. Appl. Phys. <u>25</u> (1986) L631
- D. C. Chen et al; IEEE Trans. Electron Devices ED-33 (1986) 1463
- N. Natsuaki et al; Thech. Dig. 1986 Symp. VLSI Technol., p37
- 4) C. j. Kircher; J. Appl. Phys. 46 (1975) 2167
- 5) K. N. Ritz et al; J. Appl. Phys. <u>60</u> (1986) 800
- S. P. Murarka; J. Vac. Technol. <u>17</u> (1980) 775

Table 1 Conditions of junction formations.

		n ⁺ /p junction	p ⁺ /n junction
implantation		As ⁺ ,40keV and 80keV,5×10 ¹⁵ /cm ²	$B^+, 10 \sim 15 \text{ keV}, 2 \sim 3 \times 10^{15} / \text{ cm}^2$
	FA	950°C,10min. (+900°C,15min.)	900℃,15min.
annealing	RТА	1000°C,160sec	1000°C,100sec
		heating rate = 4°C/sec and rapid, co	ooling rate = 7~20°C/sec and rapid

Fig. 2 Schematic cross section of gate diode.

Fig. 1 Process sequences of doped layer and TiSi₂ formation.

Table	2	n	*/p	jun	ct	ion	form	ation	conditoins
	a	nd	lea	akag	е	curi	rent.	As +	implanted
					-	15	0		

dose	is	5x101	°/cm²	

	conditions and results							
	1	2	3	4	5	6		
As ⁺ impl. energy	40 keV	40 keV	80 keV	40 keV	40 keV	40 keV		
anneal. condition	950°C,10min.	950°C,40min.	950℃,10mjn.	1000°C,160sec	1000°C,160sec	1000°C,160sec		
heating rate				rapid	rapid	4°C/s		
cooling rate				rapid	7℃/s	rapid		
junction depth	0.12µm	0.17µn	0.17µm	0.09µm	0.09µm	0.10µm		
leakage Ja(A/cm²)	3.8 E -10	2.1 E -10	2.9 E -10	3.5 E -10	4.1 E -10	4.0 E -10		
Vr=5V Jp(A/µm)	1.2 E -10	1.1 E -10	1.2 E -10	2.4 E -10	1.6 E -10	2.1 E -10		

and leakage current. B^+ implanted condition is 10keV, $2x10^{15}/cm^2$.								
	conditi	ons and re	sults					
	1	2	3					
annealing condition	900℃,15min.	1000℃,100sec	1000°C,100sec					
heating/cooling rate		rapid/rapid	4℃/s/10℃/s					
junction depth Xj	0.23µm	0.18µm	0.20µm					
leakage Ja(A/cm ²)	2.6 E -10	3.5 E -10	3.1 E -10					
Vr=-5V Jp(A/µm)	2.2 E -10	5.1 E -10	4.5 E -10					

Table 3 p^+/n junction formation conditions

Fig. 3 Relationship between perimeter leakage and surface recombination velocity.

Table.	4	Character	ist	ics	of	CMOS	transist	or
	f	abricated	by	opt	imum	cond	litions.	

		sour	ce / drain formation	conditions
		junction only	junction → TiSi ₂	$TiSi_2 \rightarrow junction$
BVds (V)	n channel	14.7	14.5	12.4
[Vg=0V]	p channel	11.3	12.4	7.9
Śm (S)	n channel	1.38×10 ⁻³	1.38×10^{-3}	1.38×10 ⁻³
$[Leff=0.5\mu m]$	p channel	0.90×10^{-3}	1.05×10^{-3}	1.05×10^{-3}
ΔL (μ m)	n channel	0.26	0.29	0.26
[Vg=0V]	p channel	0.29	0.31	0.23
I sub/Id	n channel	3.1 × 1 0 ⁻³	2.6×10^{-3}	3.1×10 ⁻³
$[Leff=0.5\mu m]$	p channel	5.0×10^{-6}	2.2×10^{-6}	$> 5 \times 10^{-6}$
Xj (µm)	n */p junction	0.16	0.18	0.16
	p ⁺ /n junction	0.28	0.31	0.25