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Strained-layer epitaxy i.s a technique for.
growing lattice mismatched heterostructures
without introducirg, in principler aoy

additional defects from the lattice mis-
match str"in. [1] We have examined struc-
tures of strained Ge grown on Si. In this
case, the maximum permissible Ge-layer thick-
ness is 6 atomic monolayers. Since this i-s

rather thinr 3D extended structure may be

built up by alternati_ng atomic layers of Ge

with atomj.c layers of Si. The presence of a

relatively thick (400Un) Si substrate means

that the strain in the Si epitaxial layers
is negligible. Several repetitions of the
Ge-Si structure are possible before the
strain limit is again reached. The repeating
structure forms a superlattice, and i-n this
work we report our results on superlattices
composed of alternati_ng monolayers (f :f), bi-
layers (2:2) and 4-layers (4:4) of Ge and Si
grohrn on t001] si.lz] These srrucrures have
a similar average composition that is:
Ge .Si c. The energy-band structure of.) .)
strained Ge-Si al1oys is shown in Figure 1.
This figure shows that dj_rect band-to-band
transitions for a strained Ge-Si al1oy lie

c-3-1

above 2.5 eV while the indirect bandgap

appears at 0.6 
"v. 

[3] The energy level
spectra of Ge-Si atomic layer superlattices
are shown in Figure 2. These spectra are
taken using electro-reflectance spectroscopy
at 300K.

The top-most spectrum show our results for a

(1:1) atomi.c-layer superlattice. This
spectrum shows prominent features at about
2.6 eV and 2.9 eV. Taking quantum conf ine-
ment effects into account, these transitj.ons
coinci.de with those expected for the E and
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Strained-layer superlattices of Ge and Si with a period close to that of the
fundamental unit cel1 of Si can be grown pseudo-morphicalLy on Si substrates.
We have examined such the energy-1eveI structure of these superl-attices by
electro-reflectance spectroscopy. Our resul-ts show that the superlattice
structure introduces a series of new energy levels not =found in random
alloys of the same average composition. This result has important implica-
tions for band-structure engineering of Ge-Si device structures. prospects
for constructi.ng a direct bandgap Ge-Si semicond.uctor will- be discussed.

Et transitions in

It is easily seen

a random .ttoy. [4] o

that the other two spectra
in Figure 2 are more complex. The spectrum
for the (2:2) superlattice shows a strong
transition at 2.3 eV and more structure in
the 8., series of transitions. These f eaturesI
show that the structural_ superlatti.ce has an
effect on the bandstructure. The shift of
the E^ level to lower energies can be ex-o
plained by using a simple model based on the
Kronig-Penney approximat ion .

The spectrum for the (4:4) structure is shown

at the bottom of Figure 2. In this sample,
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DIRECT OPTICAL TRANSITION
ENERGIES IN STRAINED
GE-Si ALLOYS
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Figure 1: Bandgap transitibn energies for
strained Ge-Si all-oys grohrn on a (OOf) Si
substrate. The Si substrate imposed a bi-
axial- compressive strain on the Ge-Si Layer
that reached 42 when pure Ge is grovrn on Si.

that no direct optical transitions occur in
this energy range for any Ge-Si alloy. [5'6]

The origin of these transitions can be

explained in part by folding of the Bril-
louin zone by the superlattice potenti"f. [7]

However, since the indl-rect bandgap for thi-s

material- l-j-es at lower energies (about 0.6

eV and 300K) , these superlattices are al-l-

indirect bandgap materi-aIs.

Theoretical calculations have shown that in-
direct bandgap behavior i-s expected for all
Ge-Si superlattices grown on Si (00L) sub-

l7 -t3l __strates.'' --J However, these same calcula-
tions hoLd out promise that some superlattices
grown on (OOf) Ge substrates may have a band-

gap that is more direct in character.
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Figure.2: Electro-reflectance spectra for a
(l-:1) , (2:2) and (4:4) atomic-layer suPer-
lattices grown on (001) Si. The spectrum
for the (1:1) superlattice resembles that of
a random all-oy. The (2*) and (4:4) spectra
are more compl-ex and demonstrate the effect
of the superlattice on the energy band
structure.

.i

the complexity seen in the (2:2) structure

is further developed. In addition, new optl-
ca1 transitions are seen at 0.8 and 1.2 eV.

By comparing with FJ.gure 1., lt can be seen
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