Extended Abstracts of the 20th (1988 International) Conference on Solid State Devices and Materials, Tokyo, 1988, pp. 609-610

Surface Reformed Thick Spin-on-glass for Planar Interconnection

S. Ito, Y. Homma, E. Sasaki*, S. Uchimura** and H. Morishima** Central Research Laboratory, Hitachi Ltd., Tokyo 185, Japan *Hitachi VLSI Engineering Corp., Tokyo 187, Japan **Hitachi Chemical Co., Ltd., Ibaraki 317, Japan

excellent planarization technology has Α simple, but been developed utilizing a newly developed Spin-on-Glass(SOG) technique. It has been applied to fabrication of 0.8μ m-level two-level interconnections. The SOG material, HSG2200 (by Hitachi Chemical Co.) is a kind of polyalkyl-siloxane which shows excellent planarization and crack free characteristics up to 500°C in N₂. A novel technique for reforming the HSG (HSG2200) film surface has also been developed to suppress crack generation in the film by the O_a plasma-resist ashing process.

The advantages of this technology over conventional s-SOG (silanol type SOG) are as follows.

1. Stress in the HSG film is less than 1/10 that in the s-SOG(Fig. 1) film baked at the temperature below 700°, enabling a thicker film to be realized by HSG (0.6 μ m) than by s-SOG (0.2 μ m).

2. A 3 layered interlevel dielectric using HSG, CVD-SiO/HSG/CVD-SiO (0.2/0.6/0.2 μ m), provides a far better planarizing effect than by a conventional CVD-SiO/s-SOG/CVD-SiO (0.2/0.2/0.2 μ m) structure (Fig. 2, 3).

However, the HSG film had the disadvantage that many cracks were in it by a resist ashing process. This is inferred to be due to rapid shrinkage of the film caused by oxidation by the O_2 plasma. Fig. 4 shows the infrared absorption intensity of the -CH₃ band of the 0.6 μ m-thick siloxane films baked at 200°C for 30 min., as a function of exposure time to O_2 plasma (7 Torr, 300W, 13.56MHz in a barrel type reactor;asher).

Various film surface pretreatments were investigated to improve the siloxane film resistance to the O_2 plasma. O_2 RIE (Reactive Ion Etching) pretreatment was found to be an effective method. A very thin, gas-tight SiO₂-like layer, formed by O_2 RIE pretreatment, prevented oxygen plasma from reaching the inner siloxane layer under the reformed surface. Fig.5 shows the infrared absorption intensity of the -CH₃ band of the 0.6 μ m-thick 200°C-baked siloxane films measured just after each of a series of treatments. It is clearly seen from this figure that reduction of -CH₃ band intensity during O_2 plasma treatment is drastically reduced by the O_2 RIE pretreatment as compared with the result without pretreatment shown in Fig.4.

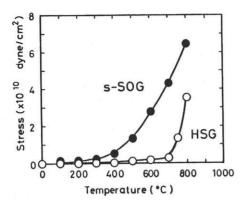
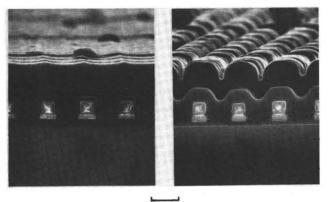
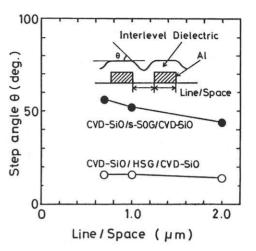



Fig.1 Stress in SOG films measured at elevated temperature.



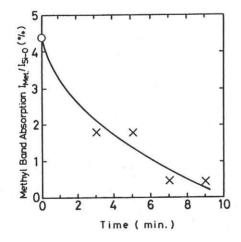

Fig. 2 Planarization capability of 3 layered-interlevel dielectrics over 0.7µm step height.

Fig. 3 Cross section of 2 level interconnection

1µm

(a) CVD-SiO/HSG/CVD-SiO

(b) CVD-SiO/s-SOG/CVD-SiO

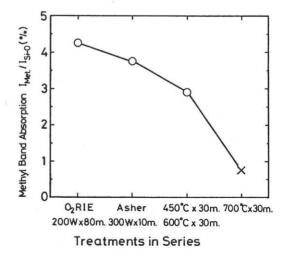


Fig. 4 Methyl band absorption of HSG film normalized by Si-O band absorption vs. time in asher O_z plasma. x indicates generation of cracks. Fig. 5 Methyl band absorption of HSG film normalized by Si-O band absorption measured after a series of treatments. x indicates generation of cracks.