A High Speed 1-kbit Variable Threshold Josephson RAM Chip

Itaru KUROSAWA, Hiroshi NAKAGAWA, Shin KOSAKA, Masahiro AOYAGI, and Susumu TAKADA
Electrotechnical Laboratory

1-1-4 Umezono, Tsukuba-shi, Ibaraki 305

This paper reports a high speed 1-kbit Josephson RAM(Random Access Memory) chip integrating variable threshold memory cells[1].

A block diagram of a 256×4-bit(1-kbit) RAM is shown in Fig.1. The memory plane is organized into four blocks, each with 64 rows and 4 columns. The variable threshold memory cell which has been proposed and investigated[2] has an equivalent circuit of asymmetric dc SQUID(Superconducting Quantum Interference Device) as shown in Fig.2. The cell has a simple structure in comparison with other Josephson memory cells. The present cell is two times smaller than the conventional ones $[3,4,5]$. This is very important to achieve a high performance Josephson memory, not only for the storage capacity but also for the access time.

The address decoder circuit consists of OR-gates and INVERT-gates, instead of AND-gate used in the conventional one. Therefore this circuitry gives a small area and a fast operating speed. One column is driven by a pair of set-reset gates with a feedback signal from the sense gate to achieve an NDRO(Non-Destructive Read Out) operation. By introducing a two phase unipolar power supply it is realized to operate the RAM chip in a pipe-line way which makes the cycle time shorter than that in a single phase or a dc power supply systems. All of the inputs are set in the active cycles of the power of phase 1 before the power of phase 2 rises up. The positive and the negative signals are made at the input buffer gates. These all peripheral circuits consist of a 4JL-gate family[6].

A photomicrograph of the 1 -kbit RAM is shown in Fig.3. The chip has been fabricated based on the $\mathrm{Nb} / \mathrm{Al}$-oxide/ Nb junction technology with $3-\mu \mathrm{m}$ design rule[7]. The cell size is $30 \mu \mathrm{~m} \mathrm{x}$ $72 \mu \mathrm{~m}$. Whole circuits are integrated in an area of 3.3 mm square on the chip.

All operating function tests were carried out in liquid He. Figure 4 shows a result of repeatable operations of write" 1 ", read, write" 0 " and read sequence for all bits. Marks" 0 " in the figure show correct-responding bits to the sequential operation. "x" indicates the location of the cell which responds incorrectly. More than 90% of the cells showed their right response. From high speed measurements, the critical delay time of the decoder and the memory plane were obtained to be 150 ps and 350 ps , respectively.
[1]I.Kurosawa et al.,Appl.Phys.Lett.43,p1067(1983);44,p567(1984).
[2]I.Kurosawa et al.,Ext.Abst.16th SSDM,p619(1984).
[3]M.Yamamoto et al.,IEEE Electron Device Lett.,EDL-4,p150(1983).
[4]W.H.Henkels et al.,J.Appl.Phys.,58,p2371(1985).
[5]Y.Wada et al.,1988 ISSCC Digest Technical Papers,p84(1988).
[6]S.Takada et al.,Jpn.J.Appl.Phys.,19,Suppl.1,p607(1980).
[7]H.Nakagawa et al.,Jpn.J.Appl.Phys.,25,pL70(1985).

Fig. 1 Block diagram of the 1-kbit Josephson RAM.

Fig. 2 The variable threshold memory cell.

Fig. 3 Photomicrograph of the 1-kbit Josephson RAM.

	bit1-4	bit5-8	bite-12	bit13-16
1	xoxo	000	0000	00×0
2	xoxo	00xo	0000	0000
3	0000	0000	0000	0000
4	0000	0000	0000	0000
5	00×0	0000	0000	0000
${ }^{6}$	x000	00x0	0000	0000
7	0000	0000	0000	0000
-	0000	0000	0000	0000
9	0000	0000	x000	0000
10	0000	00xo	0000	0000
11	0000	0000	0000	0000
12	0000	0000	0000	0x00
13	0000	0000	x000	0000
14	0000	00x0	0000	0000
15	0000	0000	0000	0000
16	0000	0000	0000	0×00
17	0000	0000	0x00	0000
18	0000	0000	0000	0000
19	0000	0000	0000	0000
20	0000	$000 \times$	0000	0000
21	0000	0000	0x00	x000
22	0000	0000	0000	0000
23	xoxo	0000	0000	0000
24	0000	$000 \times$	0000	0000
25	00×0	0000	0000	00xO
28	0000	0000	000x	0000
27	0000	0000	0xco	0000
28	xxoo	0000	0000	0000
29	00×0	0000	0000	00x0
30	0000	0000	000x	0000
31	0000	0000	0x00	0000
32	0xoo	0000	0000	0000
33	0000	0000	0000	x000
34	x000	xxoo	0×00	0000
35	0000	0000	0000	000
${ }^{36}$	0000	0000	0000	0000
37	0000	0000	0000	x000
38	0000	0000	0×00	0000
38	0000	0000	0000	0000
40	0000	0000	0000	0000
41	0000	0000	0000	0000
42	0000	0×00	0000	0x00
43	0xoo	0000	0000	0000
44	000x	0000	0x00	0000
45	0000	0000	0000	0000
48	x000	0x00	0000	0x00
47	0x00	0000	0000	0000
48	000x	0000	0×00	0000
48	0000	0000	0000	0000
50	x000	00×0	0x00	0000
51	x000	0000	coxo	0000
52	x000	0000	x000	0000
53	x000	0000	0000	0000
54	xx00	00×0	0000	0000
55	x000	0000	00xo	0000
56	$\times 000$	0000	x000	0000
57	0000	0000	0000	0000
50	0000	0000	0×00	0000
58	$\times 000$	0000	0000	0000
80	x0x0	0000	$\times 000$	0000
61	x000	0000	0000	0000
${ }^{62}$	$\times 000$	0000	0×00	0000
63	X000	0000	0000	0000
64	$\times 0 \times 0$	00×0	$\times 000$	0000

Fig. 4 Error bit map measured on the 1 -kbit RAM chip.

