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Thermal Stability of SiC,:H-Emitter Silicon HBTs
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Hydrogen evolution from SiCx:H and pc-Si:H deposited by the
plasma CVD method is studied by thermal desorption spectroscopy and IR

spectroscopy. Influence of annealing at 450" C on the hFE

of a SiCx:H—

emitter and a pc-Si:H-emitter HBT is also comparatively investigated.
Part of hydrogen atoms in SiCx:H are incorporated in a stabler manner

than the hydrogen atoms in

pe-si:H.

Accordingly, even after

annealing at 450" C the SiCX:H—emitter HBT exhibits a higher hFE than a

homojunction transistor, while the g c-Si:H-emitter HBT does not

the wide-gap effect any longer.

1. INTRODUCTION
The
transistor

silicon heterojunction
(Si-HBT)

emitter or a narrow-bandgap base is

bipolar
with a wide-bandgap

regarded

as a key device to break through the
operation-speed limitation -of Si-LSIs
composed of homojunction transistorsl'z}. In

particular, the wide-bandgap emitter Si-HBT
is attracting a growing interest because the
conventional Si-LSI fabrication process

be employed with little alteration.

can

Among several materials proposed for the

wide-bandgap emitter, hydrogenated micro-

Si (pce-8i:H)

having a low resistivity and a
3,4)

crystalline seems especially

promising,
low interface-state density
must be

However, a number of problems

overcome before pc-Si:H can be wused in

practical applications. The most serious
problem is thermal instability. Hydrogen
atoms in pc-Si:H easily evolve during
thermal treatment at about 400°C which is
required in the metallization and the
packaging processes. This results in the
generation of Si dangling bonds causing

excessive base current, by which the wide-
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show

bandgap effect may be counteracted. Bandgap
narrowing may also occur as a result of the
hydrogen (H) evolution.

To

investigated the properties

overcome these problems, have
of plasma-CVD-
carbon(C)-doped r©c-Si:H,
SiC.:H%).  The
expected effect of mixing CHy with the source

gases 1is

we

deposited
hereafter referred to as
stabilization of incorporated H by
¢! and/or by the
configuration through modification of the

modifying atomic

plasma condition.

This paper describes the behavior of H in

SiCx:H during thermal treatment in
comparison with that in gc-Si:H and the
effect of annealing at 450°C on the current

gain (hgg) of a SiC,:H-emitter and a pc-
Si:H-emitter HBT.
2. EXPERTMENTAL
2.1 Film Preparation and Characterization
The were a  SiHy-Ho-Ar
mixture for pgc-Si:H and a SiH4-CH4-Ho-Ar
mixture for SiCx:H. The deposition conditions
are Table I. The C

SiCx:H determined by SIMS

source gases

summarized in

in
-3

concentration
was 2x1021 cm



Table I Deposition Conditions

Substrate temperature: 400° C
Deposition gas flow rate
SiHy: 2.5 sccm
CH4(0nly for SiCy:H): 0.8 scem
Ar: 50 sccm
Hy: 150 sccm
RF power: 0.26 W/cm2

For characterizing the behavior of H in
SiC;:H and in pc-Si:H during annealing, H
evolution was measured by thermal desorption
(t0s)8) and  infrared (IR)
The film thickness
was 0.3 pm for TDS measurements and 5-6um
for IR measurements. Si wafers were used as

spectroscopy

absorption spectroscopy.

the substrates. The temperature raising rate
for TDS was 20 K/min.

The optical bandgap (Eopt) of SiCy:H and
1 c-Si:H, before and after annealing in a Ng

ambient, was deduced from the photon energy
dependence of the optical absorption
coefficient in the visible 1light region.

Quartz plates were used as substrates.
2.2 HBT fabrication
Si-HBTs
SiC;:H or uc-Si:H as the emitter. For n-type
doping, PHy was added at a rate of 4x1073
scem to the gas

were fabricated using n-type

mixtures. The P
concentration determined by SIMS was about
4x1020 ¢n™3  in both SiCy:H and pc-Si:H.
Conventional Si planar technology, including
boron ion implantation for the base-region
formation, was employed in the transistor

fabrication process before emitter
formation. Details are described elsewhere®.
The peak boron concentration in the base
region was 1x1018 cm 3. The emitter size was
10 gm X 1 pm.

transistor
fabricated. The

was formed by slightly diffusing As

A control homojunction

(homotransistor) was also
emitter
base

from As-implanted polysilicon. The

structure was essentially the same with the

HBTs. The emitter carrier concentration was
1x1020 cp3,

3. RESULTS and DISCUSSIONS

3.1 Hydrogen Evolution

The H concentration in SiC;:H determined
by SIMS 1is 1x10%2 cn™3, and is 5 times as
high as that in gxc-Si:H (2x102L en™3).

The SiCy:H and the pc-Si:H films
exhibit different TDS H evolution spectra as
in Fig.1.
expressed in terms of the Q-mass ion current
The H
pc-Si:H has a

shown The evolution rate of H is

at a mass number of 2. evolution

spectrum of single-peak
pattern centered at 400°C. In contrast with
400° C

incorporation of a

this, SiCX:H has two peaks centered at
and 580" C,
thermal

and shows
stabler component of hydrogen.
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Fig.1. TDS H evolution spectra

Figure 2 shows IR absorption appearing in

the wavenumber region from 1900 to 2200 cm_l
due to the Si-H and the Si-H, (n>2)
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Fig.2. IR absorption spectra



stretching vibrations. Absorption by the C-H

and the C-H, stretching vibrations in the

range from 2800 to 3000 cm'l were not clearly
observed due probably to a low C content and
a small absorption cross section of the C-H
stretching oscillators. As implied by the
different H evolution spectra of SiCX:H and

pgc-Si:H, their IR spectra are also quite
different. The relative intensity of Si-H
absorption with respect to Si-H, absorption
is stronger in SiC;:H than in pc-Si:H.

The H evolution during annealing at 450°C
is shown in Fig. 3 as an annealing time
dependence of the integrated absorption
intensity { a/kdk, where a and k are the
absorption coefficient and the wavenumber,

respectively. The intensity is normalized by
the The
absorption intensity of Si-H

the

as-deposited wvalue. integrated

SiCy:H
annealing
proceeds. stable component of H
SiCy:H to the high-
temperature-side peak in the TDS spectrum of

SiCy:H.

in
most
This

seems

decreases slowly as
in

relevant
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annealing time

All the results above indicate that part
of H atoms are incorporated in SICX:H in a
than in rc-Si:H. The
mechanism of H stabilization is still wunder

stabler manner

investigation.

Integrated absorption intensity versus
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3.2 Optical Bandgap

Figure 4 shows E and B in the

opt
relationship ahv =B(hyv -E opﬂ 2as a function
of the annealing temperature, where hy is
the photon energy. The annealing time is 30
min.
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Fig.4. Eopt and B of SiCx:H and pc-Si:H

versus annealing temperature

Above 350°C, Eopt decreases with increasing
temperature. However, even after annealing at
550" C, Eopt is still large enough to exhibit
the wide-gap effect in Si-HBTs, so
generation-recombination

long as

centers do not

increase. The value of B implies that the
energy range of the tail states is narrower
in SiCX:H than in g c-Si:H. Moreover, the

temperature dependence of B indicates that

SiCx:H is structurally stabler than g c-Si:H.

This difference in the structural stability
between SiCy:H and pc-Si:H may somewhat
reflect the difference in H incorporation
described in 3.1.
3.3 HBT characteristics

The hpp versus collector current
characteristics of the transistors are shown
in Fig. 5. The effect of the wide-gap
emitter is evident. The hpg values of both
HBTs are much higher than that of the
homotransistor.

The HBT characteristics after annealing in
a N, ambient at 450°C for 30 min are shown in
Fig. 6. Although the SiCy:H-emitter HBT shows



a greater reduction in hFE at low collector
than the pc-Si:H-emitter HBT, it
maintains its maximum hFE well above that of

currents

the homotransistor, in contrast with the uc-
Si:H-emitter HBT whose maximum hpg  has
dropped below that of the homotransistor. The
reduction in hpp at low collector currents is
most relevant to the deep gap-states, and
that at high currents to the
shallow gap-states or tail states. This is
the contribution of the deep gap-
to the recombination current becomes

collector

because
states
pronounced when the emitter-base junction is
condition and

under a small forward-bias

therefore the energy level of the valence-

band edge in the base is close to that of the

deep gap-states in the emitter. When the
emitter-base junction is deeply forward-
biased, the tail states in turn mainly

contribute to the recombination current. The
density of the deep gap-states created as a
result of H evolution is considered to be
higher for SiCy:H than for puc-Si:H,
the amount of H evolved during annealing,
determined by SIMS, is 5x10%1 cn™3  for
SiCy:H, and is 5 times as large as that for
ic-Si:H. This is presumably responsible for

since

the greater reduction in hpgp at low collector
currents of the SiC,:H-emitter HBT.
tail-states broadening by annealing is
smaller for SiC,:H than xc-Si:H as implied
by Fig. 4. This is probably the background of

However,
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Fig.5. hgg versus collector current

the wide-gap effect maintained for the
SiCx:H-emitter HBT after annealing.

T T T T

3L T J
10 after anneal
102 1 ]
L
T
L=
10 -
1 I 1 L ' 1 1 1 1
100 108 106 10% 102
Ile / A
Fig.s6. hpp versus collector current after

annealing at 450°C
4. CONCLUSIONS

1) The SiC4:H film contains a thermally
stabler component of hydrogen than the ue-
Si:H film.

2) The optical measurements indicate that

SiCx:H is structurally stabler against
annealing than g c-Si:H.
3) The SiCy:H-emitter HBT maintains

higher hpp than the homotransistor even after
annealing at 450°C, in contrast with the pc-
Si:H-emitter
dropped below that of the homotransistor.
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