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Abstract

We present a general-purPose prograrn for the simulation of semiconductor devices in three dimensions. This
program solves the Poisson and continuity equations in steady-state and transient conditions. The implemented grid
allocation scheme allows for spatial grid adaption in all directions. The linear systems are solved using preconditioned
conjugate gradient-like methods. We descibe the investigation of parasitic latchup in a CMOS structure and of the
turn-of of a bipolar transistor with our program. Tlansient simulations on meshes with several tens of thousands
of points can be performed within hours on a'supercomputer.

Introduction

The rapid developments in the integrated circuit and
optical communications industry are increasingly re-
lying on the results of numerical simulations for faster
and better prototyping. The numerical simulation of
semiconductor devices has therefore become an im-
portant area of research and development in both
academic and industry environments.

Silicon devices are inherently three-dimensionat (3-
d) structures. While for many problems the behavior
of devices can be modeled in either one or two dimen-
sions, 3-d simulation becomes necessary for MOS and
bipola^r devices with submicron design rules,. com-
plex latchup structures or DRAM cells. While for
2-d device simulation quite general programs exist
by now, present 3-d device simulators [2, 3] are lim-
ited in many respects. The main problems include
the modeling of general geometries, the allocation of
spatial grids, the solution of the linearized equations
with efrcient and stable iterative methods and the
visualization of simulation results.

This paper describes our approach towards the
simulation of realistic 3-d semiconductor devices.
Section 2 formulates the well-known device equa-
tions. In section 3 we describe how we discretize
the 3-d domain using tetrahedra, pyramids, prisms
and bricks. Section 4 shows how the equations are
linearized and how the linear equations are solved
using iterative conjugate gradient-like methods. Fi-
nally, section 5 shows results from latchup investiga-
tions in a CMOS structure and from the simulation
of the turning of of a bipolar transistor.
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2 Semiconductor Equations

Our 3-d device simulator Spcorn solves the conven-
tional semiconductor drift-diffusion equations:

V.(evrl) + q(p- n* /V) = 0, (1)
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where the dependent variables to be determined are
the electrostatic potential, 4(*), and the electron and
hole ca^trier concentrations, n(x) and p(x), respec-
tively. Here, g, €,, N, and R are electron charge,
dielectric constant, net impurity (doping) concen-
tration, and recombination-generation terms, respec-
tively. The variables x and t stand for the space and
time variables. The electron and hole current densi-
ties are given by

Jr, = -gF"nyrh * k6Tp,nyn, (4)

Jp = -qpppYlh - keTp,oYp (5)

with the mobilities p, the temperature ? and the
Boltzmann constant ka,

We employ the usual models incorporating velocity
saturation and heavy doping effects, as well as normal
field effects at the gate oxide interface in MOSFET
inversion layers. The recombination terms include
recombination at localized traps and three-particle
(Auger) efects.

3 Discretization

The device equations are spatially discretized by the
box method (BM). We use grids consisting of tetra-



hedra, quadrilateral pyramids, prisms and bricks, as

created by our grid generator 0 [4]. O is based on
a modified Octree techniquel to generate a grid it
first tessellates the device with the required density
using bricks of the appropriate size. The other ele-

ment types are then used to pass from coa,rse to dense

mesh regions without hanging nodes. Pyramids and
prisms are also used to fit non-rectangular device
boundaries and material interfaces. This results in
smoothly varying grid densities, avoids small angles
that could lead to numerical problems and produces
regular grids in device regions where a constant point
density sufrces. The density of the generated grid
depends on the doping distribution and on user re-
quirements.

In addition to the spatial grid, O provides the
dual grid (Voronoi diagram) required for the box dis-
cretization. The box surfaces are guaranteed to be
positive by construction of our Octree-based grids.
Therefore, we never encounter the well-known obtuse
angle problem inherent in the BM.

For the time discretization we use the scheme pro-
posed by Bank et al. [1] which uses a composite trape-
zoidallbackward differentiation formula for the time
integration and a time step control based on an esti-
mate of the local truncation error.

4 Numerical Aspects

For the linearization of the non-linear equations re-
sulting from the spatial discretization we either use

the (decoupled) Gummel iteration, where repeatedly
each PDE is solved individually until a self-consistent
solution is obtained, or a Newton iteration on the
full (coupled) system of equations. In the Gummel
case the individual non-linear systems are also lin-
earized by a Newton method. The Gummel method
has the advantage that linear systems with only lV
unknowns must be solved, where lV is the number
of grid points, while the coupled Newton iteration
requires the solution of 3.ff-dimensional linear sys-
tems. This means that the memory requirements are
lower for the Gummel method, and it also tends to
be faster for quickly converging problems. On the
other hand it converges very slowly, or not at all, in
ca,ses of strong coupling between equations. The full
Newton scheme, on the other hand will only converge
if started sufficiently close to the solution.

We therefore use the Gummel method for prqblems
with low current flow, as in DRAM simulations, and
to obtain a suitable sta"rting point for the full Newton
scheme. For transient simulations or for devices in a
high current mode the full Newton scheme must be
used.

For the Gummel iterations it is advantageous to
use the electric potential $ and, the carrier densities

n and p as the unknowns, since then the continu-
ity equations are almost linear and hence converge
quickly. However, in the coupled case this choice of
variables is not appropriate due to the fact that the
densities vary by many orders of magnitude stronger
than the electric potential. We therefore replace the
densities by the quasi-Fermi levels.

Realistic 3-d simulations typically require grids
with several tens of thousands to more than a hun-
dred thousand grid points. The resulting linear sys-
tems are far too big for direct (Gaussian elimination
based) solvers and iterative methods must be used.
Since the linea"r systems arising from the current con-
tinuity equations and from the fully coupled Newton
iteration are usually ill-conditioned, most popular it-
erative solution methods do not work.

We have found that the conjugate gradient squared
method (CGS), together with ILU preconditioning,
usually performs best. However, even this method
tends to fail to converge due to truncation problems,
unless the implementation is done carefully [5].

The irregularity of our grids makes it more difrcult
to get good performance out of vector and pa^rallel

computers. Reordering of the unknowns is required
so that independent equations can be processed in
parallel. This has an adverse effect on the condition
of the preconditioned system and results in increased
iteration counts. However, we found that in general
these losses are more than offset by the resulting gain
in machine performance.

5 Results

We present two examples of transient simulations
performed with the prograrns O and Spconn.

Figure 1: Impurity distribution for the CMOS struc-
ture
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The first one is an investigation of parasitic
latchup. We have examined part of an n-well CMOS
configuration in I pm technology. The example fea.
tures an extremely shallow n-well (1.35pm). Figure 1

shows the doping distribution and the rectangular ar-
rangement of the various tubs.

The structure contains two parasitic bipolar ele-
ments: a lateral npn and a vertical pnp transistor. If
the device did latch, the thyristor current would flow
diagonally from the p+ to the n+ diffusion. In the
simulation we applied 5 y to the n-well contacts and
0 V to the p-well contacts and the substrate. We then
turned on the lateral transistor by applying a voltage
pulse to the p+ diffusion, rising from 0I/ to -0.85 y
in lns. Figure 2 shows the electron current density
after the pulse has been held'for 10 ns - there is no
indication of latchup.

Electron current density after 10 zs

A second example simulates the turning off a bipo-
lar transistor. Figure 3 shows doping and geometry
of a trench-isolated npn ECL transistor. The grid
used for the simulation is shown in Fig. 4. We used
a common base configuration with a collector base
bias of 5 V and an emitter base bias of 0.8 y. The
transistor was switched off by linearly reducing the
emitter bias to 0 V within L ns. Figures 5 and 6 show
the electron current density in the device at different
times. The figures indicate that the transistor is ba-
sically turned off after as little as 0.2ns.

The simulations were performed on a Convex C-
220 with 256 Mbytes of memory and on a Cray-2
with 1 G byte, using one processor on both machines.
Table 1 summarizes the time and memory require-
ments and gives some figures on the convergence be-
havior of both simulations. In general we find the
Cray-2 about 8 - 10 times faster than the Convex.

Impurity distribution of the bipolar tran-

Structure CMOS Bipolar
machine c-220 Cray-2
number of grid points 34673 31592
memory [M byte] 128 160
total cpu time /U 25 2
time steps 168 83
average time step /ps/ 65 13
Newton iterations
per time step (average) 2.0 2.6
average number of
linear iterations 25 62

Table 1: Time and memory requirements and con-
vergence behavior for CMOS structures

6 Conclusions

We have presented our approach for solving the drift-
diffusion equations in 3-d. The implemented grid al-
location strategy allows both efficient allocation of
grid points and the modeling of general device geome-
tries. We have discussed our experiences with sparse
iterative solvers and the impact of preconditioning on
the convergence behavior. We have used our simula-
tor for the investigation of parasitic latchup in CMOS
structures. The example shows that transient simu-
lations on grids with 50k mesh points lie on the edge
of todays mini-supercomputers.

Figure 3:
sistor



Figure 4: simulation grid for the bipolar transistor

Figure 5: Electron current density after 0'1ns
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