A Model for SiN_x CVD Film Growth Mechanism by Using SiH₄ and NH₃ Source Gases

Akihiko Ishitani and Shiro Koseki*

VLSI Development Division, NEC Corporation 1120 Shimokuzawa, Sagamihara 229, Japan *NEC Scientific Information System Development, Ltd. 34 Miyukigaoka, Tsukuba 305, Japan

This paper theoretically explores the SiN_x CVD film growth mechanism by means of the ab initio molecular orbital method. In a chemical vapor deposition (CVD) reactor, an SiH₄ and NH₃ gas mixture produces silylenes (X-Si-Y: X and Y are substituents). Insertion of silylene into a surface Si-H or N-H bond is the important part of the CVD film growth mechanism. Following the insertion, H₂-elimination reaction occurs from the surface. To obtain the reaction energies of these insertion and H₂-elimination reactions, ab initio molecular orbital calculations are carried out. The proposed SiN_x CVD film growth mechanism explains Si-H and N-H bonds remaining in an SiN_x film and the stoichiometry deviation. Based on the mechanism, it is predicted that new source gas (SiNH₅) deposits a stoichiometric SiN_x film.

1. Introduction

Because of the rapid advances in ULSI fabrication technology, a very thin film SiN_x , e.g., approximately 70 Å thick CVD film for stacked capacitor of a 16 Mbit DRAM, is needed for next generation ULSIs. Low pressure CVD method with SiH₄ and NH₃ gas mixture is usually adopted for preparing an SiN_x film on a stacked polycrystalline silicon (poly-Si) film. After SiN_x film deposition, the SiN_x film surface is thermally oxidized to decrease leakage current. This stacked capacitor fabrication process forms an SiO₂/SiN_x/SiO₂(native oxide)/poly-Si layered structure.

Electrical characteristics and chemical properties of the layered structure are very sensitive to the thin SiN_x CVD film quality. Actually, the thermally oxidized SiO_2 (top layer) thickness depends on the oxidation resistance of the thin SiN_x film. The current vs voltage characteristics also depends on the SiN_x CVD condition. These experimental observations are attributed to the remaining Si-H and N-H bonds in an SiN_x CVD film or the film composition. It is well known that an SiN_x film, deposited from SiH_4 and NH_3 source gases, contains many Si-H and N-H bonds, and is Si-rich [1]. However, to our knowledge, no microscopic SiN_x CVD film growth mechanism has been proposed that explains the remaining Si-H and N-H bonds and film composition. Therefore, in this work, the SiN_x CVD film growth mechanism to understand these imperfections.

2. Computational method

The geometries for all the stationary points in the vapor phase reactions are optimized at the restricted Hartree-Fock (RHF) level with an MC-311G(d,p) basis set. This level of theory is denoted by RHF/MC-311G(d,p). The complete set of harmonic force constants is also evaluated for each stationary point. These can then be used to characterize the nature of the stationary point, a minimum being characterized by all positive eigenvalues of the force constant matrix and a transition state being characterized by only one negative eigenvalue. The force constants are also used to compute zero-point vibrational energies. Electron correlation effects are included by means of MCSCF/MC-311G(d,p)//RHF/MC-311G(d,p).

As for the surface reactions, the reaction energies are calculated at RHF level with an MC-311G(d,p) basis set. The geometries of clusters are not optimized, because the clusters simulate a solid surface. Electron correlation energies are evaluated by GVB-PP(3)/MC-311G(d,p)//RHF/MC-311G(d,p), because accurate MCSCF calculation is impractical for such a large system at the present stage. Consequently, the computational results give us qualitative explanation about the surface reactions. However, it is possible to obtain a model for the SiN_x CVD film growth mechanism based on our computational results coupled with experimental results in the literature. All the calculations in the present work are performed by using the quantum chemistry code GAMESS [2].

3. Vapor phase reactions

Before discussing the SiN_x CVD film growth mechanism, it is useful to summarize the vapor phase reactions of NH₃, SiH₄, and their products. In an SiN_x CVD reactor, many kinds of species can be produced from an SiH₄ and NH₃ gas mixture by thermal decomposition. The dissociation energies of NH₃ and SiH₄ are listed in Table 1. The values include zero-point-energy correction. NH₃ molecule decomposition can be neglected in a conventional SiN_x CVD reactor at around an 800°C deposition temperature, since the lowest dissociation energy is 91.5 kcal/mol (3.8 eV). On the other hand, SiH₄ easily produces SiH₂ and H₂ due to the dissociation energy of 48.8 kcal/mol. But, the other decomposition reaction can be neglected.

It has been reported that the insertion of SiH_2 into an N-H bond of NH_3 produces $SiNH_5$, and that the stabilization energy is 60 kcal/mol [3]. H_2 -elimination from $SiNH_5$ occurs with the endothermic reaction energy of 35 kcal/mol, and the product is $SiNH_3$. $SiNH_3$ has $HSi-NH_2$ structure through 1,1-elimination reaction, and H_2Si-NH structure through the 1,2-elimination reaction. According to the RHF/MC-311G(d,p)//RHF/MC-311G(d,p) calculation, HSi-NH₂ is lower in energy than H_2Si- NH by 13 kcal/mol. Due to the subsequent insertions of silylenes with silanes and NH_3 , homogeneous nucleation in the vapor phase occurs. Namely, particles are generated in a CVD reactor through high temperature insertion reactions, since higher order reactions need sufficient thermal excitation.

However, at relatively low deposition temperature, i.e., around 800°C, the main species are source gas molecules and lower order products. Therefore, SiH_4 , NH_3 , SiH_2 , $SiNH_5$, and $SiNH_3$ seem to play an important role in the SiN_x CVD film growth.

Table 1. The dissociation energies of NH₃ and SiH₄.

Product D	Dissociation energy (kcal/mol)
(NH ₃)	
$NH_2 + H$	91.5
$NH + H_2$	122.1
N + H + H	I ₂ 200.7
(SiH₄)	
$SiH_3 + H$	78.9
$SiH_2 + H_2$	48.8
SiH + H +	-H ₂ 113.8
$Si + 2H_2$	86.1

4. SiN_x film surface

In order to simulate surface reactions between gas phase species and an SiN_x film surface by means of quantum chemistry calculations, cluster models have to be prepared for surface Si and N atoms. Figure 1 shows the α -Si₃N₄ structure. The α form crystallizes in the space group P31c with unit-cell dimensions a=7.818 Å and c=5.591 Å [4]. The β form unit-cell dimensions are a=7.606 Å and c=2.909 Å in the space group P63/m [4]. Amorphous Si₃N₄ is considered to be structured by mainly 6-membered (α form) and 8-membered (β form) rings and by partly other membered rings, since Si-N bond length and / SiNSi bond angle of the β form are flexible in the vicinity (1.69-1.73 Å, 128-135°) of the energy minimum [5]. In any membered ring, tetrahedral coordination for Si atoms and trigonal coordination for N atoms are conserved. Therefore, in the present work, Ncentered Si2NH6 and Si-centered SiN3H6 cluster models are used for simulating trigonally coordinated surface N atoms and tetrahedrally co-ordinated surface Si atoms, respectively. In the cluster models, the third neighbour Si or N atoms are replaced by H atoms.

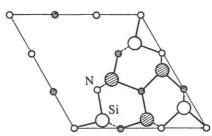


Fig.1. Top view of α form Si₃N₄. Open and shaded circles indicate the first and the second layer atoms, respectively. Large and small circles show Si and N atoms, respectively. Lines mean chemical bonds except for the unit-cell rhombi.

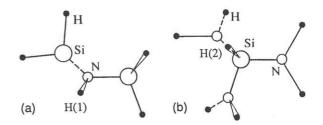


Fig.2. Top views of (a) the Si_2NH_7 cluster for a surface N atom, and (b) the SiN_3H_7 cluster for a surface Si atom.

In the present work, dangling bonds of surface Si and N atoms in Si_2NH_6 and SiN_3H_6 cluster models are terminated by H(1) and H(2) atoms as shown in Fig.2, since an H-terminated SiN_x CVD film surface model is adopted here. As discussed in the

following sections, surface Si and N atoms unterminated by an H atom cannot react with SiH₄, NH₃, SiH₂, SiNH₅, and SiNH₃. Moreover, the chemisorbed Si and N atoms of these species, which become new surface atoms, should be H-terminated, because these species are all H-terminated. Therefore, an Si₃N₄ film surface is simulated by an N-centered Si₂NH₇ cluster model and an Si-centered SiN₃H₇ cluster model as illustrated in Fig.2.

In the total energy calculations, the cluster geometries are fixed at an 1.743 Å Si-N bond length and 109° \angle NSiN bond angle, corresponding to the α form. It is desirable to know the adsorption potential curve depending on the locally optimized Si and N atom positions of clusters. However, the local geometry optimization calculation is not feasible at the present stage of computational ability. Instead of this calculation, other cluster models with C3v and Cs symmetry are examined for the total energy calculation to confirm the computational results.

5. Surface reaction

First, by using an N-centered Si_2NH_7 cluster model, insertion of silylenes into the surface N-H bond are analyzed. Due to the similar insertion mechanism of SiH₂ into NH₃ [3], SiH₂ inserts into an N-H bond of the H-terminated surface N atom, and the Si-N bond is formed as illustrated in Figs.3(a) and (b). This insertion reaction is represented by the following eqation in the present work.

$$SiH_2 + Si_2NH_7 ---> H_3Si-N(SiH_3)_2,$$
 (1)

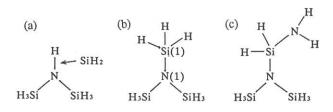


Fig.3. (a) Insertion of SiH_2 into the N-H bond of Si_2NH_7 cluster, (b) chemisorbed SiH_2 and Si_2NH_7 cluster, and (c) chemisorbed $SiNH_3$ and Si_2NH_7 cluster.

The exothermic reaction energy for this insertion is calculated to be 64 kcal/mol by the RHF/MC-311G(d,p)//RHF/MC-311G(d,p) method. SiNH₃ also attacks the surface N-H bond, and Si-N bond is formed as illustrated in Fig.3(c) with the exothermic reaction energy of 41 kcal/mol.

$$SiNH_3 + Si_2NH_7 --> H_2N-H_2Si-N(SiH_3)_2.$$
 (2)

To estimate the reliability of these reaction energy values, the dependence of the reaction energy on the computational method and the cluster symmetry are investigated. When electron correlation energy for the insertion reaction of Eq.(1) is included by GVB-PP(3)/MC-311G(d,p)// RHF/MC-311G(d,p) calculation, the reaction energy is 61 kcal/mol. If the cluster symmetry in Fig.2(a) is modified to C3v by rotating the terminated H atoms around the Si-N bond axis, the reaction energy is 63 kcal/mol. The large exothermic reaction energy for Eq.(1) is almost independent on the computational method and cluster symmetry.

Next, by using an Si-centered SiN_3H_7 cluster model, insertions of silylenes into the surface Si-H bond are analyzed. SiH₂ and SiNH₃ insert into the surface Si-H bond with the exothermic reaction energies of 47 and 22 kcal/mol, respectively.

$$SiH_2 + SiN_3H_7 --> H_3Si-Si(NH_2)_3.$$
 (3)

$$SiNH_3 + SiN_3H_7 ---> H_2N-H_2Si-Si(NH_2)_3.$$
 (4)

Due to these insertion reactions, Si-Si bonds are formed. When electron correlation energy is included by GVB-PP(3)/MC-311G(d,p)//RHF/MC-311G(d,p) calculation, the reaction energies are 41 and 17 kcal/mol for Eqs.(3) and (4), respectively. In addition to the cluster model in Fig.2(b), which corresponds to α form Si₃N₄, the cluster models with C3v and Cs symmetries are prepared by rotating the terminated H atoms around the Si-N bond axis and used for the reaction energy calculations. The obtained values are 46 and 47 kcal/mol. The exothermic reaction energies for Eq.(3) are not so much affected by the computational method and cluster symmetries.

After the insertion reaction of Eq.(1), H_2 -elimination from the cluster occurs as illustrated in Fig.4(a) with the endothermic reaction energies of 54 kcal/mol.

$$H_3Si-N(SiH_3)_2 --> HSi-N(SiH_3)_2 + H_2.$$
 (5)

After the insertion reaction of Eq.(3), another H_2 -elimination reaction occurs with the endothermic reaction energy of 65 kcal/mol,

$$H_3Si-Si(NH_2)_3 ---> HSi-Si(NH_2)_3 + H_2.$$
 (6)

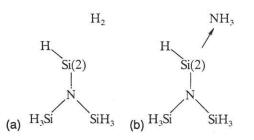


Fig.4. (a) H_2 -elimination from the chemisorbed SiH₂, and (b) insertion of Si(2) into NH₃.

H- and H₃-elimination reactions need very large endothermic reaction energies, and seem not to occur in a conventional SiN_x CVD reactor. H₂-elimination from the SiNH₃-chemisorbed Si₂NH₇ and SiN₃H₇ clusters also occur. After these H₂elimination reactions, the Si atom has an sp²-like molecular orbital. Therefore, the H₂-eliminated system corresponds to a silylene, and intervenes into an N-H bond of NH₃. For instance, following the H₂-elimination reaction of Eq.(5), the chemisorbed Si(2) atom intervenes into NH₃ as illustrated in Fig.4(b).

$$NH_3 + HSi - N(SiH_3)_2 - -> H_2 N - H_2 Si - N(SiH_3)_2.$$
 (7)

The reaction energy for this insertion is 60 kcal/mol. The H_2 eliminated systems are able to intervene not only NH_3 but also silanes.

6. Discussion

As described in the previous section, the H-terminated SiN_x surface model explains the CVD film growth mechanism on an SiN_x surface in consistency with the insertion and H₂-elimination reactions. The experimental observations, that many Si-H and N-H bonds are contained in an SiN_x CVD film, also support the H-terminated surface model. This is because the Si-H and N-H bonds remaining seem to result from missing the insertion and H₂-elimination reactions of these bonds during the growth.

The CVD film growth mechanism proposed here also explains that the SiN_x film composition deposited by using SiH_4 and NH_3 is Si-rich. According to the mechanism, Si atoms are incorporated by the SiH_2 and $SiNH_3$ insertion reactions into the surface Si-H and N-H bonds, while N atoms are incorporated only by the $SiNH_3$ and Eq.(7) insertion reactions. Therefore, the film composition is inevitably Si-rich. Consequently, in a conventional SiN_x CVD reactor, NH_3 flow rate has to be much higher than SiH_4 flow rate to minimize the stoichiometry deviation.

Last, to improve the very thin SiNx film quality for a stacked capacitor, we can obtain two predictions from the model for the SiNx CVD film growth mechanism. First, if SiNH5 is used as a source gas instead of SiH₄ and NH₃, the film composition approaches being stoichiometric. Since the main species produced from SiNH₅ is SiNH₃, Si and N atoms are mostly incorporated into the film in pairs. Second, a transition layer exists in the SiNx film. As mentioned in the introduction of this article, an SiN, film is deposited on a native oxide film by using SiH4 and NH3. Since there is no surface Si-H and N-H bonds on the native oxide, heterogeneous three dimensional nucleation of silicon must happen before the subsequent SiN_x film growth. Therefore, there seems to exist an Si-rich transition layer between the native oxide and the bulk SiNx film. The electrical characteristics of stacked capacitor will be much improved, if we can prepare an SiN_x film without the transition layer.

7. Conclusion

The SiN_x CVD film growth mechanism is explained by the insertions of silylenes into the surface Si-H and N-H bonds and the H₂-eliminations from the surface, and the H-terminated SiN_x surface model is successfully adopted to simulate the surface reactions. The proposed CVD mechanism accounts for not only Si-H and N-H bonds remaining in the SiN_x CVD film but also the stoichiometry deviation. It is predicted that new source gas (SiNH₅) deposits a stoichiometric SiN_x film, and that an Si-rich transition layer exists between the native oxide and the bulk SiN_x film.

References

- [1] H.J.Stein; J. Appl. Phys. 57 (1985) 2040
- [2] M.W.Schmidt, J.A.Boatz, K.K.Baldridge, S.Koseki, M.S. Gordon, S.T.Elbert, and B.Lam; Quantum Chemistry Program Exchange Bulletin <u>7</u> (1987) 115
- [3] K.Ragharavachari, J.Chandrasekhr, M.S.Gordon, and K.J. Dykema; J.Am.Chem.Soc. <u>106</u> (1984) 5853
- [4] R.W.G.Wyckoff; "Crystal Structures" 2nd ed. Chap. VD, p158 (John Wiley & Sons, New York, 1964)
- [5] M.M.Julian and G.V.Gibbs; J. Phys. Chem. 89 (1985)5476