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demonstration of 26 characters recognition
by the optical hardware. Secondly, GaAs

optical neuro-chips including both static
and dynamic chips are described.

Present Status and tr\rture Trend
of ,A.rtiflcial Neural Elardware

1. INTRODUCTION

Optics is very promising for building
large-sca1e and high-speed neurocomputers

because of its unique features of innate
para1lelism, and global and dense intercon-
nection capabilityl). The future prospect

of the performance of the optical neural
networks is illustrated in Fig.1, BS com-

pared with the Si-LSI approaches. Among

various optical architectures reported so

far, the approach based on the optical
vector/matrix multiplier using discrete
devices are particularly attractive because

optical integration is possible by the

compound-semiconductor technologies .

However, one problem is that the present

neural models are not necessarily suitable
for optical implementation in terms of the

accuracy required for the devices. The

second problem is that the technologies for
optical integration is not matured.

This paper contains two topics. First,
quantized learning models which permit the

use of the binary-operating optical devices

are proposed, followed by the experimental
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Technologies for optical implementation of neural neEworks are described,
with emphasis on the presenL status and future prospect of optical neuro-
devices. The quantized neural network modelling for optical implementation
and several demonstrations of optical artificial hardware including static-
and dynamic-optical neurochips are also discussed.
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Fig.l PresenL status and future trend
of the artificial neural hardware.
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2. QUANTIZED LEARNING MODELS FOR OPTICAL

IMPLEMENTATION

2-I Quantized Learning Rule

The profound difference beLween

hardware- and software-irnplemented systems

is the limitation of the interconnection

weight levels in the hardware. In this con-

text, quantized learning rules lrere deve-

loped for the back-propagation (BP) mode12)

and Boltzmann machin"3). As an example, the

proposed learning procedure for the BP model

is principally illustrated in Fig.2 and sum-

marized as follows; (1) Start with ran-

domly-distributed continuous weights Wij,
(2) Quantize I,{i j into several discrete
(quantized) levels I'Iijr say, (-W, O, W), (3)

Address Wij on the SLM and present one of
the training and supervised signals to the

network, (4) Calculate the error signal 6|trlij

by the conventional BP formulas, (5) Correct

Lhe continuous weight t^Iij by adding 6lttr13 (6)

Repeat steps (2)-(5) for all training
signals until the. connection strengEh pat-

tern is converged. In this learning, the

quantized weights 4re addressed to the opti-
cal hardware whereas the continuous weights

are stored in the electronic memory.

Therefore the smooth change in the weights

as well as the fast optical parallel pro-

cessing are achieved.

Block Diogrom

2-2 26 Characters Recognition by The

Optical Learning NeLwork

A schematic diagrarn of the optical net-
work based on the quantLzed learning rule
with bipolar three levels is shown in Fig.3.

Arrangement of thc Constructed OpteElectronic Neural Network
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Fie.3 Constructed optical hardware for
the proposed irodel.

The optical multiplier is constructed of 32

LEDs, a binary-liquid-crystal SLM htith 32 x

32 pixels, and 32 PDs. The time-division-
multiplexing technique4) rras employed to
implement the three-layered BP network. We

have succeeded in the recognition of 26

characters of alphabet, ttatt to "2" , using

this learning network5)' The network was

trained so that the output neuron which

takes the maxmum value among 26 neurons

corresponds to the desired answer in

response to the input training character.

The experimental results well agreed with

the computer simulations.

3. OPTICAL NEUROCHIPS

3-1 Static Optical Neurochip

Two types of AlGaAs/CaAs optical
neurochips, that is, Hopfield-type and

BP-type, have been developed by MBE crystal
growth technique. The Hopfield-type

neurochip has fully-connected 32 neurons and

3 stored memories. The recognition rate of
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Fig.2 Learning procedure of
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the associative memory using this chip was

well agreed with the computer simulation re-
sults6). The processing speed was 2.6 GCPS.

Figure 4 shows the experimental layout for
the 26 alphabet recognition using the newly-

Experimentol Configurotion

Fig.4 Layout of the newly-developed
BP:type optical neirrochip.-

developed BP-type neurochip. This neurochip

consists of 66 Line-shaped LEDs, 3648 quan-

Eized synaptic interconnection elements and

110 line-shaped PDs, which are three-
dimentionally integrated on a 10-nur square

GaAs substrate. The AlGaAs/GaAs MQW active
layers and AlAs/GaAs Bragg reflectors were

introduced in the LED elements to obtain
high-efficient and uniform emission. The

experimental results are shown in Fig.5

together with the computer simulations.
It is verified that the use of the quantized

synaptic weights is very helpful for optical
implementation. The little discrepancy bet-
ween them will be decreased by the improve-

ment of the flip-chip bonding technique.

3-2 Dynamic Optical Neurochip

In order to develop a dynanic optical
neurochip, vte propose the use of a

sensitivity-variable photodioaeT)r 8s shown

in Fig.6. This device consists of a

MOS-type PD and a pn junction. The MOS-PD

works as a SLM because the depletion depth

is varied by the gate voltage and then the

absorption rate is modulaEed. This device

can be employed as an nonvolatile SLM by

using the poly-silicon film as the gate

material, and then the on-chip learning is
possible. The photocurrent generated in the

depLetion layer in sumned up through the pn

junction and the metal-wired dendrite.
The computer simulation results are

shown in Fig.7. The optical crosstalk and

signal to noise ratio are plotted as a func-
tion of the neuron number which can be

integrated. The parameter is a gap between

Ehe LED array and the sensitivity-variable
photodiode array for the optical crosstal-k
(solid curves), and bandwidth for the signal
to noise ratio (dotted curves). When the
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bandwidth is I MHz, the neuron number is
mainly limited by the optical crosstalk. It
is found that the maxmum number of neurons

is more than 2000 neurons /cm? for the BP

learning networks because the pernitted
optical crosstalk is about -5 dB8). And the

possible neural processing speed is esti-
mated to be I to 100 TcPs.

4. CONCLUSION

The optical neural network technologies

recently developed in our laboratory have

been reviewed. The proposed quant i.zed

models was verified to be useful for optical
implementation. The optical neurochips are

expected to play an important role for the

large-scale and ultra-fast hardware.

Fig.6 Dynamic optical neurochip usine a
s6nsitivity-variable photbdiode -
array.
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