The Influence of Synchrotron X-Ray Damage on Hot-Carrier-Induced Degradation in Subquarter-Micron NMOSFETs

T. Tsuchiya, M. Harada, K. Deguchi, and T. Matsuda

NTT LSI Laboratories
3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-01, JAPAN

Hot-carrier reliability due to residual damage in the gate oxide created by synchrotron X-ray irradiation is investigated for subquarter-micrometer NMOSFETs. Although irradiation-induced interface-traps are completely eliminated after 400 °C post-metalization-annealing, neutral electron traps partially remain. The effect of the residual traps on hot-carrier degradation can be negligible when gate oxides thinner than about 5 nm are used. It is found that there is no effect of irradiation damage on interface-trap generation during hot-carrier-injection.

1. INTRODUCTION

Synchrotron radiation (SR) X-ray lithography is promising for fabricating future deep-submicrometer ULSIs. However, there is a great concern over hot-carrier (HC) reliability due to residual damage in the gate oxide created by X-ray irradiation. Several projects have investigated the influence of the damage on HC-induced MOSFET degradation [1]-[3]. These projects have dealt with greater than half-micrometer devices with gate oxides thicker than 10 nm, and with relatively small (10^2 mJ/cm^2) maximum irradiation doses. This paper focuses on the irradiation and HC-effects for subquarter-micrometer NMOSFETs with thinner gate oxides under a wider irradiation range (10^-3, 3,000 mJ/cm^2).

2. EXPERIMENTAL PROCEDURES

N⁺ poly-Si-gate NMOSFETs with 3.5-12.0 nm thick gate oxides and 80 nm deep source/drain junctions[4] were used in this study. Gate layers were patterned by EB lithography. After gate electrode fabrication, samples were annealed at 900 °C for 30 minutes in N₂ atmosphere to eliminate EB damage. Except for the gate layer, optical lithography was used. Irradiation experiments were performed in an NTT SOR Facility [5]. In order to investigate irradiation-induced damage and the effect of post-metalization-annealing, which is the final annealing through fabrication process, direct exposure was made without any resist layer either before or after the final annealing in N₂/H₂ forming gas at 400 °C for 30 minutes. X-ray wavelengths ranged from 0.7-1.2 nm. The maximum irradiation dose (3,000 mJ/cm^2) was set to evaluate irradiation effects due to five- or six-lithography-level exposure using typical-sensitivity X-ray resist, assuming a three-level metal process where high-temperature annealing is not performed except for the final N₂/H₂ annealing.

3. RESULTS AND DISCUSSION

3.1. IRRADIATION DAMAGE

X-ray exposure generates interface-traps, positive charges and neutral traps in the gate oxide [6]. Generated interface-traps were evaluated by charge pumping current I_{cp} [7], and they are completely eliminated after the final annealing, even under a maximum dose of 3,000 mJ/cm^2, as shown in Fig. 1. Generated positive charges also disappeared after the annealing. This was confirmed by a comparison with MOSFET characteristics.

Fig. 1 Charge pumping current vs. exposure dose.
tistics of non-irradiated devices. Residual neutral traps were evaluated by threshold voltage shift ΔV_T after substrate hot-electron injection [8]. ΔV_T due to the trapping of electrons are shown in Fig. 2 as a function of injected electron charges. ΔV_T increases with the increase in the exposure dose, and it cannot recover to the non-irradiated level, even after the final annealing. This means that neutral traps are not completely recovered even after the final annealing. Effects of the gate oxide thickness on ΔV_T are shown in Fig. 3 for non-irradiated devices, and for 3,000 mJ/cm2-irradiated and subsequently-annaeled devices. Injected electron-charges are fixed at 0.5 c/cm2. ΔV_T dramatically decreases as the gate oxide thickness T_{OX} decreases below 8 nm. T_{OX} will be a key parameter in reducing the influence of the residual neutral traps on HC-degradation.

3.2. HOT CARRIER DEGRADATION

3.2.1. EFFECTS OF X-RAY DAMAGE

In order to investigate the effect of X-ray damage on HC-induced device degradation in subquarter-micrometer NMOSFETs, threshold voltage shift ΔV_T and the increase in I_{CP} dependences upon stress gate voltage under stressed-sress-drain-voltage were measured. The bias-stress was applied to the devices after exposure. The results for 0.2 μm NMOSFETs are shown in Fig. 4. Compared with non-irradiated devices, ΔV_T increases remarkably with increased exposure dose, especially in the higher stress-gate-voltage range. It should be noted that ΔI_{CP} is not dependent on the exposure dose, which means that irradiation-induced damage does not play any role in interface-trap generation during HC-injection. The increase in ΔV_T is clearly due to the trapping of injected-hot-electrons in the irradiation-induced traps.

Here, it has been reported that HC-degradation is significantly increased in PMOSFETs due to the enhanced electron trapping in the oxide by the residual traps [9]. Recently, it was found that HC-degradation mode for quarter-micrometer level PMOSFETs is quite different from previous reports (i.e., effective channel-length reduction due to trapped electrons), and the new degradation mode is caused by interface-traps generated by hot-hole-injection [10]. Interface-trap generation is a more important phenomenon than electron trapping for future PMOSFETs. Therefore, the fact that there is no irradiation-induced damage effect on interface-trap generation during HC-injection is highly significant.

3.2.2 EFFECTS OF ANNEALING AND GATE OXIDE THICKNESS ON DEVICE LIFETIME

ΔV_T and ΔI_{CP} dependences upon stress gate voltage for 3,000 mJ/cm2-irradiated and subsequently-annaeled 0.2 μm-NMOSFETs are shown in Fig. 5. For comparison, those for non-irradiated devices are also shown in the figure. Gate oxide thickness for both types of devices is 5 nm. It can be seen that there are no meaningful differences in ΔV_T and ΔI_{CP} between the two types of devices. The influence of X-ray damage on HC-degradation seems to disappear after the final annealing. In order to investigate the effects of the final annealing in detail, DC device lifetimes t were obtained as a function of substrate
current normalized by channel width $\frac{I_{SUB}}{W_{eff}}$. τ is defined as time required to reach $\Delta V_T=10$ mV. The results are shown in Fig. 6 for 0.2 μm NMOSFETs with gate oxide thickness and exposure dose as parameters. Although τ is slightly reduced due to the enhanced electron trapping for 8 nm gate oxide in higher exposure doses, there is little irradiation effect on τ for 5 nm gate oxide even at 3,000 mJ/cm².

Therefore, the influence of synchrotron radiation X-ray lithography on HC-induced degradation in 0.2 μm NMOSFETs is considered negligible when gate oxides thinner than about 5 nm are used, even when three-level metal processing is assumed.

4. CONCLUSIONS

Synchrotron-X-ray-induced interface-traps are completely eliminated after 400 °C N_2/H_2 annealing. However, neutral traps partially remain even after the annealing. The residual damage effect on HC-degradation is negligible for subquarter-micrometer NMOSFETs when gate oxides thinner than about 5 nm are used. It was found that there is no irradiation damage effect on interface-trap generation during HC-injection. This phenomenon will be very important for deep-submicrometer PMOSFETs where HC-degradation is mainly caused by interface-trap generation, not by electron trapping in the oxide.

ACKNOWLEDGEMENTS

The authors would like to thank M. Oda and M. Suzuki for their support in irradiation experiments. They also would like to thank T. Sakai and K. Izumi for their continuous encouragement.

REFERENCES