Electrical Characterization of YBCO/YSZ/Si Diodes

Eric M. Ajimine, Felino E. Pagaduan, M. M. Rahman, and Cary Y. Yang
Microelectronics Laboratory
Santa Clara University, Santa Clara, CA 95053

Hiroshi Inokawa
NTT LSI Laboratories
3-1 Morinosato, Wakkamiya, Atsugi, Kanagawa 224-01, Japan

David K. Fork and T. H. Geballe
Department of Applied Physics, Stanford University
Stanford, CA 94305 and
Xerox Palo Alto Research Center, Palo Alto, CA 94304

INTRODUCTION

The discovery of ceramic materials with superconducting temperatures that overlap the operating temperatures of most silicon devices brought on great efforts to incorporate these materials into silicon technology. In order to deposit films of these perovskite-type superconductors on Si, a buffer layer is required. A promising buffer layer is yttria-stabilized zirconia (YSZ), (Y2O3)0.99(ZrO2)0.01. It may be grown epitaxially on Si (100) in spite of a ~6% lattice mismatch. No deep levels which might affect carrier lifetimes have been found for Zr in Si. YSZ is also an excellent diffusion barrier. YBa2Cu3O7-δ is a well-known high-Tc superconductor and has a ~6% lattice mismatch with YSZ in the commonly observed epitaxial orientation. High-quality films of YSZ and YBCO have been fabricated in situ with pulsed laser deposition on a p-type Si (100) substrate with a dopant concentration of about 1.5 x 1018 cm−3. Both YSZ and YBCO films are 1500 Å thick. Transmission electron microscopy (TEM) of the YSZ/Si interface reveals a layer of SiO2 approximately 50 Å in thickness. The precise role of this layer is unknown but is probably responsible for the low density of states at the interface. Resistivity measurements for these films yield a critical temperature of 86 K with a transition region less than 2 K. At 77 K these films typically have a critical current density (Jc) of about 2 x 10^6 A/cm^2.

I-V CHARACTERISTICS

The YBCO layer is patterned and etched to produce metal(YBCO)-insulator(YSZ)-semiconductor(Si) diodes. Results of room-temperature (292 K) current versus voltage (I-V) measurements are shown in Figure 1. This plot shows the leakage current of the device (< 9 nA/cm^2) as the voltage is swept from -3 to 3 V and then from 3 to -3 V. The apparent current flow through the device at 0 V is due to transient effects of ions in YSZ during the voltage sweep. This transient current was eliminated by sweeping the voltage from 0 to 3 V and then from 0 to -3 V. Low-temperature (80 K) I-V measurements reveal even less leakage (< 2 nA/cm^2) between -3 and 3 V). Bulk YSZ is an ionic conductor with a conductivity that follows an Arrhenius behavior over a wide temperature range with an activation energy of about 1 eV. Pure ZrO2 is monoclinic, while the cubic phase is stabilized by adding Y2O3. Since Y3+ substitutes for Zr4+, every two Y3+ ions in the YSZ solid solution must induce a mobile oxygen anion vacancy. The resulting conduction by oxygen anions may account in part for the room-temperature hysteresis, and the decrease thereof at 80 K.

C-V CHARACTERISTICS

Capacitance versus voltage (C-V) measurements at 10, 20, 40, 100, 200, and 400 kHz were performed at 292 K. The gate voltages are swept in the negative direction first and then in the positive direction at a fixed sweep rate and measurement frequency. This procedure helps to restore any mobile ions to their original position so that the true frequency-dependent characteristics can be revealed. As can be seen from Figure 2, the MIS capacitor shows inversion, depletion, and accumulation regions similar to that of a MOS capacitor. In the accumulation region, there is a decrease in the measured capacitance with increasing frequency. The dielectric constant (κm) can be estimated from the capacitance capacitance (C_{accum}), assuming that C_{accum} is due to the insulator capacitance only. The dielectric constant of YSZ at 10 kHz is computed to be 31 while that at 400 kHz is 25. This trend of decreasing κm with increasing frequency is similar to previous reports on bulk YSZ. It has been reported that at 200 °C the dielectric constant in bulk YSZ can change by a factor of two between 100 and 100 kHz. At room temperature, however, κm varies only slightly around 30 over this frequency range. Thus at 292 K the anion charge fluctuation in YSZ and in the SiO2 layer must also contribute to the decrease of C_{accum} with increasing frequency. In the depletion region, the capacitance curves show a shift in the negative voltage direction with increasing frequency. This behavior is a result of the decrease in C_{accum} with increasing frequency. A comparison of both voltage sweep directions at a single frequency (Figure 3) reveals considerable hysteresis. This is characteristic of MIS structures with ionic conduction in the dielectric. Hysteresis has also been reported in other MIS structures utilizing YSZ.

C-V measurements were also performed at 80 K, when YBCO is superconducting. A dramatic change in the C-V characteristics is the negative shift of about 5 V in threshold voltage (Figure 4). By neglecting interface traps, this shift corresponds to a 5 x 10^{12} cm^-2 decrease in effective negative charge. We suggest that this decrease is due to a difference between room- and low-temperature insulator charge distributions as a result of the immobilization of oxygen anions within the YSZ layer. Preliminary measurements on devices cooled down under different bias conditions yield changes in the low-temperature threshold voltage, suggesting a memory effect whereby the charge distribution in YSZ is frozen in with varying amounts of charges concentrated near the YSZ/Si interface.

Also at 80 K, the variation in accumulation capacitance with frequency is smaller, yielding a dielectric constant of 27. This result is consistent with bulk measurements of the dielectric constant of YSZ which converge over a wide frequency range to approximately the same value at low temperature. The effect in the bulk is attributed to anion immobilization, and we suspect the same mechanism is influencing our devices.

Analysis of the C-V stretch-out at high frequency reveals a density of interface traps of about 3 x 10^{10} eV^-1 cm^-2 at midgap. This is about a factor of 3 lower than earlier measurements on ion beam sputtered YSZ/Si films. We conjecture that our lower interface state density is caused by the 5 nm silicon oxide layer which forms at YSZ/Si interface; the oxide layer may be absent in the prior work because their oxygen growth pressure is approximately 600 times lower than that in our work. Without an interfacial silicon oxide layer, the ~6% lattice mismatch of the YSZ layer would presumably result in an increased number of interface traps.
Figure 4 also shows a comparison of low-temperature curves in the positive and negative voltage sweep directions. The positive sweep curve yields a lower capacitance due to insufficient generation of minority carriers, resulting in partial deep depletion. Variation of sweep rates leads to the conclusion that the inversion capacitance of the negative voltage sweep is overestimated due to the stagnant inversion layer. The true inversion capacitance may be estimated from the positive sweep curves. The resulting value is less than that at room temperature. From computations based on the depletion approximation, and assuming complete dopant ionization at room temperature, we obtain a value of about 10^{18} cm$^{-3}$ for the substrate doping and 70% dopant ionization at 80 K. This is within the range of the estimated doping concentrations in the boron-doped Si substrates.

SUMMARY

In summary, a simple MIS structure has been successfully fabricated using a YBCO superconducting gate. The electrical measurements reveal that while the YSZ buffer layer is sufficiently insulating at superconducting temperatures, the effect of ions in this layer and at the insulator/semiconductor interface constitutes the key in understanding the device operation. Studies on comparisons between this structure and similar normal-metal gate structures are in progress.

ACKNOWLEDGEMENTS

We acknowledge partial support from AFOSR contract (F49620-89-C-0017) and NSF/RUI grant (DMR-8822353). D.K. Fork is an AT&T scholar. Helpful comments and suggestions by J.B. Boyce, G.A.N. Connell, and D.B. Fenner are gratefully acknowledged.

REFERENCES