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A stable single-lobe beam deflection in coupled twin-stripe
semiconductor lasers is studied both experimentally and theoret-

ically.

It is also demonstrated that the laser oscillation can

be switched between a single-longitudinal mode oscillation and a
multi-longitudinal mode oscillation by simply varying the ratio
of current injection into the two stripes.

1. Introduction

In view of expanding the appli-
cation fields of semiconductor las-
ers, a large amount of efforts has
been devoted to the development of
new functional laser devices. Among
them are the coupled twin-stripe
lasers ( CTLs ) which provide such
attractive functions applicable to
dynamic optical interconnections and
optical signal processi?g as the
output beam deflectiog and the
multi-stable operations.

In this paper, we report on the
first comprehensive study on the beam
deflection in CTLs, experimentally
demonstrating as well as theoretical-

ly analyzing a stable single-lobe
beam deflection achieved by varying

current injection into the two
stripes. Also described is a newly-
found unique feature of CTLs, the

capability of electrically tailoring
the laser coherency to be fit for
various applications; one can choose
between a single-longitudinal mode
oscillation and a multi-longitudinal
mode oscillation by simply adjusting
the ratio of injection levels between
the two stripes.

2. Experiments

The structure of our CTLs 1s
shown in Fig. 1. The double-hetero-
structure wafer consists of a 0.5
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Fig.1 The laser structure.

um-thick n-GaAs buffer layer, a 1.5
#m-thick n- Algy 5Gag 5As cladding
layer a 0.1 zm thick undoped
gAs active layer, a 1.5 um-
thlc& p- Al 5As cladding layer
and a 0.5 um th?ck n-GaAs current-
blocking layer grown on an n-GaAs
substrate by MOVPE. A pair of
stripes 2 ym wide separated from each
other by 4 um is delineated by Zn
diffusion through the n-GaAs top
layer utilizing an AIN film as a
mask. On the AIN film is a Au/Cr
electrode which is split into two
parts by chemical etching in order
that the two stripes may be independ-
ently pumped.

Figure 2 shows the far-field
patterns of a CTL as a function of
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Fig.2

the current injection ratio r = I, /
( I + Ip ), where I, and I, are %he
injection currents applie to the

individual stripes and the laser
output is fixed at 2 mW. It can be
seen that, as the degree of asymmetry
in the injection levels is increased
( r—=0, r—=1.0 ), the output beam is
deflected towards the stripe with
lower injection levels and a clear
beam deflection of + 4.5° is achieved
for 0 < r < 1. It can be also seen
that, while the far-field pattern is
of pure single lobe in a certain
region of r around the symmetric
injection ( r = 0.5 ), a small shoul-
der appears on one side of the main
lobe under highly asymmetric injec-
tions ( r~0, r~1.0 ).

In order to gain further insight
into the mechanism of the change in
the far-field patterns with r, the
lasing spectra has been measured as a
function of r as shown in Fig. 3. It
can be seen in Fig. 3 that a single-
longitudinal mode oscillation at
comparatively longer wavelengths
under the symmetric injection 1is
replaced by a multi-longitudinal mode
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Fig.3 Variation of lasing spec-
trum with r. Output power

is fixed at 2 mW.

oscillation at comparatively shorter
wavelengths as the asymmetry is
increased.

A careful observation of these
phenomena including the observation
of spectrally resolved far-field and
near-field patterns has revealed that
the variation of r causes a switching
between two distinct lateral modes,
A and B, leading to the switching
between the single- and multi-longi-
tudinal mode oscillations.

3. Analysis and Discussion

The lateral mode behavior of
CTLs has been numerically analyzed
taking account of the effects of the
carrier-induced refractive-index
change on the waveguiding.

Figure 4 shows the modal gain
calculated as a function of r. The
solid curves are for the fundamental
mode under the symmetric injection
( A-mode ). The broken curves are for
the lasing mode under asymmetric
injections ( B-mode ). Shown in Fig.
5 are the calculated far-field pat-
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terns of A-mode ( the solid lines )
and B-mode ( the broken lines ).

The analysis shows that, when
the injection asymmetry is moderate,
the laser oscillates in A-mode which
exhibits appreciable single-lobe beam
deflection with an increase in the
asymmetry since the phase front is
deflected towards the region with
higher refractive index, and a
further increase in the asymmetry
gives rise to the oscillation in B-
mode which, for r = 0 and r = 1.0,
exhibits twin-lobe and multi-longi-
tudinal mode behavior inherent in
narrow-stripe gain-guided lasers.

Thus, the analysis explains the
essential features of the experimen-
tal results and can be used in
optimizing the laser structure for
beam deflection.

4. Conclusion

In summary, the modal behavior
of CTLs has been studied both experi-
mentally and theoretically, and a
stable beam deflection of + 4.5° as
well as the capability of tailoring
the laser coherency has been demon-
strated. These results show that
CTLs are one of the promising devices
in the future opto-electronic sys-
tems.
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