AC Hot-Carrier-Degradation Mechanism in LDDMOSFET's

Nobuhiro SHIMOYAMA and Toshiaki TSUCHIYA

NTT LSI Laboratories
3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-01, JAPAN

The hot-carrier degradation mechanism under AC stress are investigated for LDDMOSFET's. Enhanced AC degradation occurs in LDDMOSFET's as well as in single drain MOSFET's. This is explained well by the neutral-electron-trap generation model to be due to hot-hole injection, which occurs at larger VDs than a critical value. AC enhanced degradation peculiar to the LDD structure appears in gm degradation under drain voltages lower than the critical value.

1. INTRODUCTION

It has been reported that gate-pulse-induced noise from wiring inductance causes enhanced device degradation under AC stress and screen intrinsic AC effects(1)(2). After taking measures to suppress the noise, enhanced AC hot-carrier degradation was observed in single drain (SD) structure MOSFET's. The intrinsic enhanced degradation is explained well by the hot-hole-generated neutral-electron-trap model(3)(4). This model postulates that neutral electron-trap-centers are generated by hot-hole-injection during a bias condition in which drain voltages are higher than a critical value and gate voltages are low. A part of injected hot-electrons are trapped in the centers. This model is now widely accepted(5)(6). With respect to LDD-structure MOSFET's, however, opinion is almost evenly divided. Some papers say enhanced AC hot-carrier degradation is present, and others say it is not. In short, there is no universally accepted model of AC hot-carrier-degradation in LDDMOSFET's. This paper clarifies the intrinsic AC hot-carrier-degradation mechanism in LDDMOSFET's.

2. EXPERIMENTS

The devices used in this study were LDDMOSFET's with channel widths of 20 \(\mu \)m, gate lengths of 0.5 \(\mu \)m, and a gate oxide thickness of 11 nm. AC stress tests were performed by applying AC pulses to the gate electrode with a constant drain voltage. In these experiments, the influence of wiring-induced noise was prevented by connecting an external capacitor between the source and the ground. After stressing, device degradation was evaluated by threshold voltage shift \(\Delta V_{th} \) and the reduction rate in the maximum transconductance \(\Delta gm/gm \) at \(VD=0.1 \) V.

3. ENHANCED AC DEGRADATION IN LDDMOSFET's

The \(\Delta gm/gm \) and \(\Delta V_{th} \) dependence upon the gate voltage VG pulse rise time are shown in Fig.1(a) and (b), respectively with the stress drain voltage VD (static) as a parameter. Frequency, duty ratio, and falling time of gate pulses are fixed at 100 Hz, 50% and 50 \(\mu \)sec. In order to balance the duration of both AC and DC stress, the stress time is 90 min for AC and 45 min for DC. At VD less than 5.5 V, both \(\Delta gm/gm \) and \(\Delta V_{th} \) are independent of the VG gate pulse rise time. In addition, the amount of degradation due to both DC and AC stress is the same. On the other hand, at VD=6 V, both \(\Delta gm/gm \) and \(\Delta V_{th} \) increase with increase in the rising time. Therefore, enhanced AC degradation appears in both \(\Delta V_{th} \) and \(\Delta gm/gm \) for drain voltages higher than a critical value (6.0 V) in LDDMOSFET's, as well as SDMOSFET's.

In order to explain the reason why enhanced AC degradation generates, hot-holes and hot-electrons were alternately injected. The changes in \(\Delta gm/gm \) and \(\Delta V_{th} \) as a function of time are shown in Fig. 2. Hot holes were injected during periods I and III, hot electrons were injected during periods II, IV and VI, and trapped electrons were detrapped during period V. The changes in \(\Delta gm/gm \) and
\(\Delta V_{th} \) as a function of time for hot-electron injection only are shown in the insert of the figure. It is found that electron injection following hole injection causes enhanced degradation, compared with cases subjected only to electron injection. Moreover, the electron-injection-induced degradation in LDDMOSFET's is cancelled by subsequent hole injection and electron detrapping. These tendencies agree well with the case of SD structure(3). Under actual AC conditions, hot-holes are injected into the oxide and generate neutral-electron-trap centers during low VG periods. Then electrons are injected during high VG periods and enhanced degradation is caused by an increase in the number of electrons trapped in the neutral-electron-traps.

For \(V_D=6 \) V in Fig. 1, as the duration of hot-hole injection (i.e., the number of injected hot-holes) increases with the increase in VG pulse rise time, enhanced degradation appears in \(\Delta g_{m/gm} \) and \(\Delta V_{th} \).

4. NEW AC DEGRADATION MECHANISM

The \(\Delta g_{m/gm} \) and \(\Delta V_{th} \) dependence upon stress frequency are shown in Fig. 3(a) and (b), respectively. Both pulse rising time and falling time are 50 nsec and duty ratio is 50%. At \(V_D=6 \) V, both \(\Delta g_{m/gm} \) and \(\Delta V_{th} \) increase with increasing stress frequency. The increase in stress frequency under larger \(V_D \) than the critical value shows that the number of injected holes during gate pulse rising and falling times increases. Therefore, at \(V_D=6 \) V which is higher than the critical value, enhanced AC degradation appears in \(\Delta V_{th} \) and \(\Delta g_{m/gm} \), i.e., this degradation increases with increase in stress frequency. At \(V_D=5.5 \) V which is less stress than the critical value, although \(\Delta V_{th} \) is independent of stress frequency, \(\Delta g_{m/gm} \) increases with increasing stress frequency. This is enhanced AC degradation in \(\Delta g_{m/gm} \) peculiar to the LDD structure. As shown in Fig. 4(a), even at \(V_D \) values of less than the critical value, hot-holes can be injected into the gate oxide above the LDD layer during low VG (the rising and/or falling edges of the gate pulse)(7). In this case, as the number of subsequently-injected and trapped electrons in the gate oxide above the LDD layer increases, the
resistance of the LDD layer increases, and gm is remarkably degraded. On the other hand, as \(\Delta V_{th} \) is caused mainly by trapped electrons in the gate oxide above the channel, enhanced AC degradation does not appear in the \(\Delta V_{th} \). For VD values higher than the critical value, hot-holes can be injected into the gate oxide above the channel near the drain, as well as above the LDD layer, as shown in Fig. 4(b). In this case, enhanced AC degradation appears not only in \(\Delta g_m/g_m \) but also in \(\Delta V_{th} \).

Here, the reason that the enhanced degradation does not appear in the \(\Delta g_m/g_m \) for VD=5.5 V in Fig. 1(a) is the difference in the gate pulse height. Hot-carrier stress for VD=5.5 V in Fig. 1(a) is imposed at the gate pulse height which gives the maximum substrate current. This is the bias condition showing the maximum degradation rate. In this case, \(\Delta g_m/g_m \) is caused while the gate switch is on ("gate on" period) and the effect during the rising and falling edges of the gate pulse is negligibly small.

5. CONCLUSION

AC hot-carrier effects exist in LDDMOSFET's, and are explained well by the neutral-electron-trap generation model to be due to hot-hole injection, the same as in SDMOSFET's. AC enhanced degradation peculiar to the LDD structure appears in gm degradation under drain voltages lower than a critical value, above which AC hot-carrier effects appears in the \(V_{th} \) shift.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Eisuke.Arai, Tetsushi Sakai and Hideo.Yoshino for their continuous encouragement through this work.

REFERENCES

(1) E. Takeda et al., 1991 IRPS (Las Vegas),118.
(2) R. Bellens et al., IEEE T-ED, 37, (1990) no.1, 310.
(3) T. Tsuchiya et al., 1985 SSDM (Tokyo),21.
(5) B. S. Doyle et al., IEEE T-ED, 37, (1990) no.8, 1869.
(7) T. Tsuchiya et al., IEEE EDL, 6, (1985) no.1, 8.