Characterization of Ultra-Thin Capacitors Fabricated Using RTN Treatment Prior to CVD Ta₂O₅ Film Formation

Satoshi Kamiyama, Pierre-Yves Lesaicherre, Akihiko Ishitani, *Akira Sakai, *Akio Tanikawa, and **Iwao Nishiyama

VLSI Development Division, NEC Corporation 1120 Shimokuzawa, Sagamihara, Kanagawa 229, Japan

*Micro-electronics Research Laboratory, NEC Corporation **Opto-electronics Research Laboratory, NEC Corporation Miyukigaoka, Tsukuba, Ibaraki 305, Japan

This paper describes the electrical and physical characterization of highly reliable ultra-thin Ta_2O_5 capacitor dielectric layers, fabricated using rapid thermal nitridation (RTN) of poly-silicon, prior to CVD Ta_2O_5 film formation. The RTN treatment allows a reduction of the SiO₂ equivalent thickness (t_{eq}), as well as superior leakage and TDDB characteristics. Densification of the CVD Ta_2O_5 by dry O₂ annealing is an indispensable process to form highly reliable ultra-thin capacitors. During densification, desorption of CH₄ and H₂O from the as-grown CVD Ta_2O_5 film occurs, and the ultra-thin Ta_2O_5 film is crystallized above 700°C with an orthorhombic structure.

INTRODUCTION

Highly integrated memory devices require a very thin dielectric film for three-dimensional stacked or trenched capacitor structures^{1,2)}. CVD Ta₂O₅ is a potential material, because of its high dielectric constant (ε r=25), and its excellent step coverage characteristics. Therefore, many workers have studied CVD Ta₂O₅ method³⁻⁶⁾ and the capacitor process associated with it^{7,8)}.

This paper describes the characterization of highly reliable ultra-thin Ta2O5 capacitors (teg<3nm), fabricated using RTN treatment of the stacked polysilicon surface prior to CVD Ta₂O₅ film formation. The merits of using the RTN treatment are : (1) A reduction of the SiO₂ equivalent thickness, because the nitrided polysilicon surface prevents the polysilicon from being oxidized during Ta_2O_5 deposition and the annealing treatments following Ta₂O₅ deposition, (2) Superior leakage characteristics for the ultra-thin capacitors with RTN treatment, than for those with no-RTN treatment, (3) An extension by about 50 times of the TDDB stress time of 50% cumulative failure for the ultra-thin capacitors with RTN treatment compared to those with no-RTN treatment.

EXPERIMENTAL PROCEDURE

RTN treatments were carried out at temperatures ranging from 800 to 1100°C for 60 sec in NH₃, just after cleaning the stacked polysilicon surface by a diluted HF treatment (DHF). Ta₂O₅

films were deposited at 470°C by LPCVD using $Ta(OC_2H_5)_5$ and oxygen. Ta_2O_5 films were annealed in a furnace at temperatures ranging from 600 to 900°C, in dry O₂ or N₂ atmosphere. Then, TiN plate electrodes were deposited on Ta_2O_5 by reactive sputtering, because the leakage characteristics of the ultra-thin capacitors with TiN electrodes are far superior than those with W electrodes⁸⁰. The electrical characteristics of the ultra-thin capacitors were investigated by measuring C-V, I-V and TDDB. Further, in order to characterize the Ta_2O_5 films, thermal desorption spectroscopy (TDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) analyses were carried out.

RESULTS and DISCUSSION

The RTN treatment of the stacked polysilicon surface before Ta_2O_5 deposition, and dry O_2 annealing following Ta_2O_5 deposition are indispensable processes to form highly reliable ultrathin Ta_2O_5 capacitors.

The variation of t_{eq} with the annealing temperature is shown in Fig.1, where (a) and (b) are for furnace annealing in dry O₂ and N₂ atmospheres, respectively. In this figure, the results for RTN and no-RTN samples are shown for comparison. As shown in this figure, the RTN treatment remarkably reduces the SiO₂ equivalent thickness, because the nitrided polysilicon surface prevents the polysilicon from being oxidized during Ta₂O₅ deposition and the annealing treatments following Ta₂O₅ deposition.

TDS results of the as-grown CVD Ta_2O_5 films, are shown in Fig.2. TDS measurements were carried out from room temperature (R.T.) to 1000°C with a temperature increase rate of 100°C/minute. As shown in this figure, CH₄ (m/z=13,14,15,16), and H₂O (m/z=17,18) gases diffuse out at about 600°C. As a result, the thickness of Ta₂O₅ films densified at 700° in N₂ atmosphere is decreased by about 10%, in comparison with the as-grown films.

Fig.2 Thermal desorption spectra (TDS) of the as-grown Ta₂O₅ films.

XRD patterns of the as-grown and annealed Ta_2O_5 films, are shown in Fig.3, where (a) and (b) are for furnace annealing in dry O_2 and N_2 atmospheres, respectively. As shown in this figure, Ta_2O_5 films are crystallized above 700°C in dry O_2 or N_2 atmosphere.

Transmission electron diffraction (TED) results of the ultra-thin Ta₂O₅ films, are shown in Fig.4, where (a) and (b) are for the as-grown and annealed Ta2O5 at 750°C in dry O2 atmosphere, respectively. As shown in Fig.4(a), the as-grown of the ultra-thin Ta₂O₅ film is amorphous, because a halo pattern is observed in TED. Further, as shown in Fig.4(b), the annealed of the ultra-thin Ta₂O₅ film is crystallized, because a sharp ring pattern is observed in TED. The net-plane spacings corresponding to the sharp ring pattern of the annealed Ta₂O₅ film are shown in Table I. It is compared with previous X-ray data for orthorhombic Ta_2O_5 (β -Ta_2O_5)⁹). From this table, it is found that most of the rings of the crystallized ultra-thin Ta₂O₅ film agree with the X-ray data for orthorhombic Ta,Os.

Fig.3 X-ray diffraction pattern dependence on the annealing temperature of the Ta_2O_5 films : (a) dry O_2 and (b) N_2 .

Fig.4 Transmission electron diffraction of the ultra-thin Ta₂O₅ films : (a) as-grown and (b) annealed at 750 °C in dry O₂.

No.	d (hkl) observed	observed intensity	d (hkl) theoritical	theoritical Intensity (%)	plane (hkl)
1	3.89	VS	3.88	85	0 0 1
2	3.40	W	3.377	5	1 10 0
3	3.15	VS	3.152	100	1 0 0
			3.098	40	2 0 0
4	2.87	w	2.876	2	0 14 0
5	2.45	S	2.449	75	1 11 1
			2.423	35	2 0 1
6	2.11	w	2.105	3	1 18 0
7	2.01	w	2.007	4	1 19 0
8	1.94	S	1.944	25	0 0 2
9	1.83	S	1.832	17	0 22 0
			1.799	18	3 11 0
10	1.65	S	1.656	30	0 22 1
			1.655	35	1 11 2
			1.647	15	2 0 2
			1.633	12	3 11 1
11	1.58	M	1.576	9	2 22 0
12	1.46	M	1.461	10	2 22 1
13	1.33	S	1.333	6	0 22 2

(VS: Very Strong, S: Strong, M: Medium, W: Weak)

Table I Net-plane spacings corresponding to the sharp ring pattern observed for the annealed ultra-thin Ta_2O_5 film, and comparison with previous X-ray data for orthorhombic Ta_2O_5 (β -Ta₂O₅).

I-V characteristics of the ultra-thin Ta_2O_5 capacitors are shown in Fig.5. In this figure, the solid and dashed lines show the results for RTN and no-RTN treatments, respectively. These results show that superior leakage characteristics are obtained for the ultra-thin capacitors with RTN treatment, than for those with no-RTN treatment. The leakage current of the ultra-thin capacitors (t_{eq} <3nm), with RTN treatment and densification at 750°C in dry O₂ atmosphere, is significantly reduced to a value of 10^{-8} A/cm², at 4.3MV/cm for positive bias. Further,

the leakage characteristics of the same sample are much better in the case of negative bias, with a value of 10^{-8} A/cm² at 8.6MV/cm.

Fig.5 Leakage current characteristics of the ultra-thin Ta_2O_5 capacitors. (Positive bias)

TDDB stress time dependence of cumulative failure for the ultra-thin Ta2O5 capacitors is shown in Fig.6, where the stress conditions are positive bias, SiO_2 equivalent field $E_{eo}=15MV/cm$ (with $E_{eo}=V$ (applied voltage) / teo), and a 100°C temperature. As shown in this figure, the plotted points follow straight lines for no-RTN and RTN treatments (900,1100°C), and random failure modes are not observed. These results show an extension by about 50 times of the TDDB stress time of 50% cumulative failure for the ultra-thin capacitor with RTN treatment compared to those with no-RTN treatment. Further, TDDB reliability tests showed that the reliability of these ultra-thin capacitors is significantly much higher than 10 years for half V_{cr}=1.25V, and 100°C operating conditions.

Fig.6 TDDB stress time dependence of cumulative failure for no-RTN and RTN treatments.

CONCLUSION

This study shows that highly reliable ultrathin Ta₂O₅ capacitor dielectric layers can be fabricated by using RTN treatment of the stacked polysilicon surface prior to CVD Ta₂O₅ film formation. The merits of using RTN treatment are a reduction of the SiO₂ equivalent thickness, superior leakage characteristics, and an extension by about 50 times of the TDDB stress time of 50% cumulative failure for the ultra-thin capacitor with RTN treatment compared to those with no-RTN treatment. Densification of the CVD Ta₂O₅ by dry O₂ annealing is an indispensable process to form highly reliable ultra-thin capacitors. During densification, desorption of CH₄ and H₂O from the as-grown CVD Ta₂O₅ film occurs, and the ultra-thin Ta2O5 film is crystallized above 700°C with an orthorhombic structure. TDDB reliability tests showed that the reliability of these ultra-thin capacitors is significantly much higher than 10 years for half V_{cc}=1.25V, and 100°C operating conditions. As a result, highly reliable ultra-thin Ta₂O₅ capacitors fabricated using RTN process technology reported here are suitable for use in future high density DRAMs.

ACKNOWLEDGMENT

The authors would like to thank

Drs. M. Kamoshida, A. Morino, M. Ogawa, O. Kudo, and Y. Numasawa for their encouragement and useful advice.

REFERENCES

- D. Temmler, Symposium on VLSI Technology (1991) p.13
- H. Sunami, T. Kure, N. Hashimoto, K. Itoh, T. Toyabe, and S. Asai, IEEE Trans. Electron Devices, vol.ED-31, no.6, (1984) p.746
- M. Saito, T. Mori, and H. Tamura, IEDM Tech. Dig. (1986) p.680
- S. Tanimoto, M. Matsui, K. Kamisako, and Y. Tarui, J. Electrochem. Soc., vol.139, no.1, (1992) p.320
- H. Shinriki, M. Hiratani, A. Nakao, and S. Tachi, Extended Abstracts on the 1991 International Conference on Solid State Devices and Materials (Yokohama), (1991) p.198
- Y. Numasawa, S. Kamiyama, M. Zenke, and M. Sakamoto, IEDM Tech. Dig. (1989) p.43
- H. Shinriki, and M. Nakata, IEEE Trans. Electron Devices, vol.38, no.3, (1991) p.455
- S. Kamiyama, T. Saeki, H. Mori, and Y. Numasawa, IEDM Tech. Dig. (1991) p.827
- 9) X-Ray Diffraction File. ASTM Card No.25-0922