A Fabrication of Homogenous Poly-Si TFT's Using Excimer Laser Annealing

I. Asai, N. Kato, M. Fuse and T. Hamano

Electronic Imaging and Devices Research Laboratory,
Fuji Xerox Co., Ltd.
2274 Hongo, Ebina, Kanagawa 243-04, Japan

Uniform performance in poly-Si Thin Film Transistor’s (TFT’s) have been successfully fabricated by excimer laser annealing. The mobility and its uniformity for n-ch TFT were 62 cm²/Vs and less than ±5% at 3σ/ave. To achieve excellent uniformity with high performance, we combined step annealing that uses two energy levels, and small pitch annealing that moves a beam forward by a small pitch. The method can improve the surface morphology and uniformity of grain size in poly-Si.

1. Introduction

The poly-Si TFT is expected to provide driving circuits for large-area devices such as image sensors and LC displays. Though an excimer laser crystallized poly-Si TFT has high performance, there have been few reports about its uniformity. An energy deviation within a beam causes variation of grain size in the poly-Si and the crystallinity degrades in the overlapped area between beams. These would degrade uniformity of TFT performance. Moreover, after this crystallization, surface morphology is poor and the roughness increases as the laser energy is increased. We have evaluated the dependence of uniformity on laser energy and beam scanning pitch. As a result, both step annealing that uses two energy levels, and small pitch annealing that moves a beam forward by a small pitch, have been effective for uniformity.

In this paper, to obtain excellent uniformity for CMOS circuits, we have combined step annealing and small pitch method, and optimized step annealing conditions with small pitch annealing.

2. Experiments

An 100nm-thick a-Si film was deposited by LPCVD on a quartz substrate and then crystallized by excimer laser(KrF). The size of the beam was about 7 x 7mm² and the energy variation was less than ±5% within the beam. Step annealing consisted of an initial low energy shot E₁ followed by a 2nd higher energy shot E₂. In the single annealing process, only E₂ was used. The scanning pitches were 0.5mm and 6.5mm. Using the crystallized film, co-planar type n-ch and p-ch TFT’s were fabricated below 600°C. The TFT size was W/L = 50μm/10μm. Mobility (μ), minimum leakage current (I_MIN), threshold voltage (V_TH) were evaluated. Size was estimated using SEM views taken after Secco etching and X-ray diffraction measurement was taken to evaluate crystallinity. The surface roughness of a film was evaluated by AFM (Atomic Force Microscopy).

3. Effects of step annealing

Fig. 1 shows the dependence of the performance and uniformity on the laser energy E with 6.5mm pitch. Though high performance was achieved at E = 450mJ/cm², uniformity of mobility μ was poor. On the other hand, step annealing (“step anneal”) achieved good uniformity in μ over a substrate. This indicates that step annealing method can improve uniformity of grain sizes. From SEM observation, step annealing improved the reduction of grain sizes in the overlapped area between beams, and uniformity within a beam. Fig. 2 shows the AFM images for single and step annealing. With step annealing, surface roughness was reduced by 40% compared with the single annealed case.
Fig.1. The dependence of performance on the laser energy E(6.5mm-pitch). Step annealing used a 1st low E1 (270mJ·cm⁻²) followed by a 2nd higher E2 (450mJ·cm⁻²).

Optimization on step annealing conditions

Next, we optimized step annealing conditions with small pitch (0.5mm). Fig.3 shows the dependence of X-ray intensity on E1. The intensity corresponds to grain size. For E2 = 450mJ·cm⁻², the intensity abruptly reduced at E1 = 240mJ·cm⁻² and gradually increased above E1 = 270mJ·cm⁻². At point A, grain size was reduced due to a limitation by many little nuclei prepared by E1. However from SEM and AFM observations, the surface roughness and the deviation of grain size were found to be minimized at this point. On the other hand, when E2 was as high as 650mJ·cm⁻², the reduction of grain size was not observed at any E1. Near point A, we could expect the uniform performance of TFT’s.

Fig.4 shows the dependence of μ on E1 at E2 = 450mJ·cm⁻². The mobility reduced as E1 increases, but above E1 = 270mJ·cm⁻² its value and uniformity were improved. E1's below 270 mJ·cm⁻² have no effect on uniformity.

Excellent uniformity was derived at E1/E2 = 270/450mJ·cm⁻² (Δμ = ±5%, ΔV_TH = ±22%, ΔMIN = ±22% at 3σ/ave., n-ch). Fig.6 shows I_D-V_G characteristics in the above condition. TFT performance was excellent for both n-ch (μ = 62 cm²/V·s, V_TH = 0.8V, I_MIN = 5pA) and p-ch (μ = 45 cm²/V·s, V_TH = -2.7V, I_MIN = -2pA) types. CMOS shift resistors composed of these TFT’s showed an
Fig.5. The dependence of a mobility on the 2nd energy E_2 with small pitch ($E_1 = 270 \text{mJ/cm}^2$).

Fig.6. I_D-V_G characteristics of n-ch TFT annealed with $E_1/E_2 = 270/450 \text{mJ/cm}^2$.

excellent performance (the speed was over 1MHz at 8V supply voltage).

5. Discussion - Annealing mechanisms

Figure 7 speculates the mechanism of step annealing. In single annealing, using low E's (a) the film has good surface morphology but many defects left, while using high E's (b) the film has poor morphology but less defects. In step annealing the 1st shot with E_1 prepares a smooth surface, leaving many defects in the film. Secondly, a high E_2 does not melt the crystalline nuclei but melts amorphous-like defective parts (c). As a result, the film has smoother morphology than the single annealed one(b), and have grains of uniform size because of the presence of many little nuclei prepared by E_1. Even if there are energy deviations within a beam, these prepared nuclei could control grain sizes to be small and uniform over poly-Si film.

The effects of step annealing occurred only at an appropriate combination of E_1 and E_2. This is explained as follows. The excessively low E_1 can not prepare nuclei that do not melt easily under 2nd shot E_2. And using high E_1, the roughness in the film degrades. On the other hand, the excessively high E_2 would cancel a film structure prepared by E_1. Therefore, we must control the crystallinity of nuclei by an appropriate combination of E_1 and E_2 for uniformity.

6. Summary

With a single shot, the TFT performance was best at 450 mJ/cm², but the extremely large variations rendered this device impractical for most applications. To improve uniformity we proposed a combination of small pitch annealing and step annealing. With E_1/E_2 of 270/450 mJ/cm² the surface roughness and the deviation of the grain size were minimized. As a result excellent uniformity in TFT performance was achieved.

References

5) Y. Nishihara et al.: SID 92, p.609, 1992