Preparation and Visible Electroluminescence of µc-SiC/Porous Si/C-Si PN Junctions

Toshiro Futagi, Takahiro Matsumoto, Masakazu Katsuno, Yasumitsu Ohta, Hidenori Mimura and Koich Kitamura Electronics Research Laboratories, Nippon Steel Corporation

1618 Ida, Nakahara-ku, Kawasaki 211, Japan

We have fabricated three kinds of μ c-SiC/PS/c-Si pn junction diodes and demonstrated a current-induced visible light emission from n-type μ c-SiC/PS/p-type c-Si pn diodes. We have observed three types of visible light emissions which were a very weak white light emission, a strong orange-red light emission, and a uniform red light emission.

1.Introduction

Recently, the strong visible photoluminescence (PL) from porous silicon (PS) has attracted much interest,¹⁾ because it offers many possibilities for a new function in Si integrated circuits. Now, there are some reports on electroluminescence (EL) in Au/PS and indium tin oxide (ITO)/PS Shottky-type junction diodes.^{2,3)} However, they are insufficient for practical use because of their high threshold voltage and low EL intensity. Since the pn junction diode injects carriers more effectively into a luminescent layer than the Shottky junction diode, there is the possibility of improving the EL characteristics. The fabrication of the PS-based pn junction diode, however, is very difficult, because a low temperature preparation process (<300°C), a wide band gap(~2.5eV), and high conductivity junction material are necessary.

We have fabricated microcrystalline silicon carbon (μ c-SiC) films by electron cyclotron resonance plasma chemical vapor deposition (ECR CVD).⁴⁾ The μ c-SiC film has an optical band gap from 2.1-2.4 eV, dark conductivity from 10⁻³-1 S/cm, and its deposition process is less than 300°C. Therefore, a good pn junction is expected for PS. In this paper, we will show some characteristics of μ c-SiC/PS/c-Si pn junction diodes and demonstrate a current-induced visible light emission from the n-type μ c-SiC/PS/p-type c-Si pn diodes.

2.µc-SiC/PS diodes

Figure 1 shows the structure of the µc-SiC/PS diodes fabricated in this study. Three types of the porous Si were prepared by anodization of crystalline silicon (c-Si) substrate ethanol solution HF using (HF:H2O:C2H5OH=1:1:2) under the conditions shown in Table 1. Immediately after the anodization, the samples were transferred into an ECRCVD apparatus, and then n-type µc-SiC (thickness, 150Å) and p-type µc-SiC (thickness, 300Å) were deposited onto the PS layers of samples (a) and (b) and sample (c), respectively.

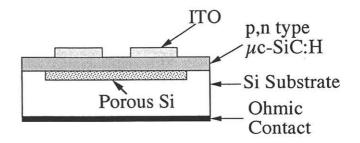


Table 1. Preparation condition of porous Si.

Sample	(a)	(d)	(c)
substrate	Si(100) (boron	p-type n doped)	Si(100) n-type (phosphorus doped)
resistivity	3.5-4.5 Ωcm	0.2-0.4 Ωcm	1.25-1.75 Ωcm
anodization current	10 mA/cm^2	20 mA/cm^2	10 mA/cm^2
anodization time	5 min	3 min	3 min
etching after anodization (a	1% KOH in H2O a few second)	electrolyte HF solution (5 min)	electrolyte HF solution (3 min)

*) During anodization the substrates were illuminated with a 500W tungsten lamp.

The deposition condition of μ c-SiC was as follows: the microwave power was 300W, the deposition temperature was 300°C, the gas pressure was 5mTorr, the gas ratios for n- and ptype μ c-SiC were SiH4:CH4:PH3:H2=1:2:0.01:190 and SiH4:CH4:B2H6:H2=1:1:0.01:234, respectively. The optical band gaps and the dark conductivities were 2.3eV and 10⁻¹ S/cm for ntype μ c-SiC and 2.3eV and 3x10⁻²S/cm for p-type μ c-SiC, respectively. These μ c-SiC films were confirmed as showing no photoluminescence. After the deposition of μ c-SiC, ITO (thickness, 600Å) was evaporated as a transparent electrode in an area of 1mm² for samples (a) and (c), and in an area of 1cm² for sample (b).

Figure 2 shows a current-voltage (I-V) characteristic of the n-type μ c-SiC/PS (sample (a)) diode. Open circles and solid circles refer to the positive bias applied to p-type c-Si substrate (forward direction) and negative bias (reverse direction), respectively. The μc-SiC/PS(sample(a)) diode showed a clear rectification behavior and the rectification ratio was 2×10^4 at ± 1 V. The n-factor calculated between 0.1V and 0.4V was 2.03. When the forward current exceeded a certain value (about 90mA at about 20V), white light emission was seen and become stronger with increasing applied voltage, although it was extremely weak.

After that, when we applied a forward voltage of more than 24V, the current suddenly increased to 619mA which is the current limitation of the voltage source used in these experiments, and at the same time, a strong orange-red light emission appeared. We observed the current induced visible light emission in only the

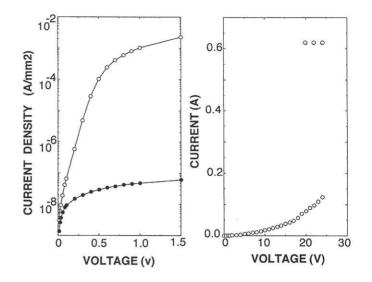
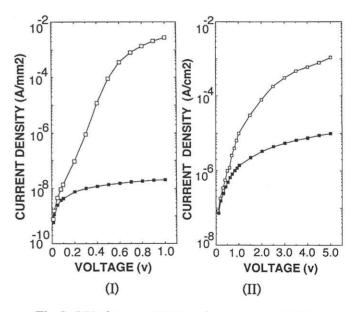
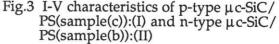




Fig.2 I-V characteristics of n-type µc-SiC/ PS(sample(a)) diode.

forward direction. No light emission was observed in the reverse voltage up to 60V.

Figure 3-(I) shows a current-voltage characteristic of the p-type μ c-SiC/ PS (sample (c)) pn junction diode. Good rectification behavior was observed and the rectification ratio was 1.4x10⁵ at ±1 V. The n-factor between 0.1V and 0.5V was 1.82. The μ c-SiC/PS(Sample(c)) diode showed no light emission even at a forward voltage more than 50V. Before the deposition of p-type μ c-SiC, the n-type PS layer showed an efficient visible PL emission. However, after the deposition of p-type μ c-SiC:H, the PS showed no

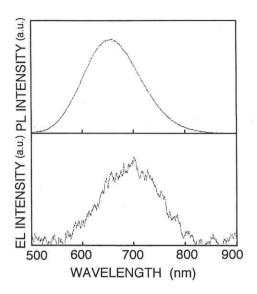


Fig.4 PL spectrum of porous Si(sample(b)) and EL spectrum of n-type μc-SiC/PS(sample(b)) pn diode.

PL emission. This is probably due to the destruction of the luminescent structure in the n-type PS which results from hydrogen ion damage during the deposition of p-type μ c-SiC by ECR plasma CVD.

Figure 3-(II) shows a current-voltage characteristic of n-type μ c-SiC:H/PS (sample (b)) pn junction diode with an ITO area of 1cm². The μ c-SiC/PS(sample(b)) diode showed poor rectification behavior. The rectification ratio was around 10 at ±1 V. The n-factor was quite large. When the forward current density exceeded a certain value (around 12mA at 18V), a stable red light emission was observed from the whole ITO area. The red-light emission was quite uniform. The EL intensity increased consistently with the forward current density of the diode.

Figure 4 shows the EL spectrum of μ c-SiC/PS(sample(b)) diode. For a comparison, the PL spectrum of the PS(sample(b)) is also shown in Fig.4. The EL spectrum was measured at the forward current density of 20mA/cm² and the applied voltage of 29V. The EL spectrum exhibited a very broad spectrum with a peak at 700 nm. The peak wavelength of the EL spectrum is about 40nm longer than that of the PL spectrum. This result is contrary to that reported by Koshida² in which the EL peak wavelength(680nm) was shorter than the PL peak wavelength (700nm).

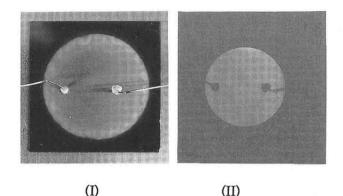


Fig.5 Photographs of n-type μc-SiC/PS(sample(b)) pn diode:(I) and EL emission from (I) in the dark:(II).

Figure 5 shows photographs of the n-type μ c-SiC/PS(sample(b)) diode and the red light emission from this EL devices in the dark. The applied voltage and the current density were 29V and 20mA/cm², respectively.

3.Conclusion

We have fabricated three kinds of μ c-SiC/PS/c-Si pn junction diodes and demonstrated current-induced visible light emission from n-type μ c-SiC/PS/p-type c-Si pn diodes. We have obtained a clear rectification behavior for all samples. We have also observed three types of visible light emissions which were a very weak white light emission, a strong orange-red light emission, and a uniform red light emission.

Acknowledgements

The authors would like to thank Professor N.Koshida of Tokyo University of Agriculture and Technology for his helpful advice, and J.Yasuda for his technical assistance.

References

- 1)L.T.Canham, Appl. Phys. Lett. 57 (1990) 1046.
- 2)N.Koshida and H.Koyama, Appl. Phys. Lett. <u>60</u> (1992) 347.
- 3)F.Namavar, H.P.Maruska, and N.M.Kalkhoran, Appl. Phys. Lett. <u>60</u> (1992) 2514.
- 4)T.Futagi, N.Ohtani, M.Katsuno, K.Kawamura, N.Ohta, H.Mimura, and K.Kitamura, J. Non-Cryst. Solids <u>137&138</u> (1991) 1271.