Angle Resolved X-Ray Photoelectron Spectroscopy Study of Ultrathin N₂O Oxides

J. Ahn, M. Arendt, J. M. White, and D. L. Kwong Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712, USA

In this paper, the chemical structure and composition of ultrathin N₂O oxides have been investigated for the first time using angle resolved x-ray photoelectron spectroscopy (ARXPS) and compared to those of reoxidized NH₃-nitrided SiO₂. It is found that N₂O oxide shows evidence of N-O bonds in close proximity to the SiO₂/Si interface in addition to the typically observed N-Si bonds in reoxidized NH₃nitrided SiO₂. The difference between The Si(2p) and O(1s) binding energies in the N₂O oxide and reoxidized NH₃-nitrided SiO₂ with the take-off angle is negligible due to the interfacial nitrogen incorporation.

Boron-doped ~5 Ω cm (100) silicon wafers were used in this study. N₂O oxide was grown at 900°C in pure N₂O ambient. Reoxidized NH₃-nitrided SiO₂ (RONO) was prepared by NH₃-nitridation at 900°C for 5 min and reoxidation for 3 min at the same temperature. The thicknesses of both oxides measured by ellipsometry technique with fixed refractive index (1.462) were ~ 25 Å. An XPS system (base pressure= 4×10^{-11} Torr) with an Mg K_a (1253.6 eV) x-ray source and a variable take-off angle setup was used.

Fig. 1 (a) and (b) show sequential XPS spectra of N(1s) and Si(2p) at different take-off angles obtained from RONO and N₂O oxide, respectively. The N(1s) peaks in both RONO and N₂O oxide are found at 398.1 eV for every take-off angle, which is very close to that in LPCVD Si₃N₄ (397.8 eV). However, the N₂O oxide shows a second N peak at 399.8 eV at 90° take-off angle (deepest probing depth) in addition to the N peak observed at 398.1 eV. This second N peak at higher binding energy is speculated to be due to the stronger N-O bond at the interface. This result indicates that there exists a different kind of chemical bond, *i.e.*, N-O bond, in close proximity to the SiO₂/Si interface in N₂O oxides in addition to N-Si bonds observed in RONO. This N-O bond is even stronger than the Si-N bond, and is speculated to have even greater immunity to the electrical stress.

Fig. 2 plots the difference in binding energy of Si 2p from the N₂O oxide and Si substrate (BE_{Si,oxide}-BE_{Si,sub}) and that between Si(2p) and O(1s) (BE_{oxygen}-BE_{Si,oxide}) in the N₂O oxide as a function of the take-off angle. BE_{Si,oxide} near surface (10° take-off angle) is at 104.2 eV which is close to that of pure SiO₄ tetrahedral structure [1]. BE_{Si,oxide}-BE_{Si,sub} decreases by increasing the take-off angle, *i.e.*, closer to the SiO₂/Si interface. This can be due to the interfacial strain [1,2] as well as the existence of nitrogen [3]. However, the change in BE_{oxygen}-BE_{Si,oxide} with the take-off angle is within our XPS instrumentation error ($\leq \pm 0.1 \text{ eV}$), as seen in Fig. 2. Similar results are seen in RONO samples.

Relative nitrogen concentration, represented as [N]/([Si]+[O]) and [N]/([N]+[O]), in both N₂O oxide and RONO are obtained from the integrated areas of different peaks and plotted as a function of take-off angle in Fig. 3. Both oxides show higher nitrogen concentration at higher take-off angle, indicating a nitrogen pile-up near the SiO₂/Si interface. However, N₂O oxide shows lower nitrogen concentration than RONO, consistent with the results from AES and SIMS. Low reactivities of nitridation species (N₂O, NO and N₂) during N₂O-oxidation are believed to result in a small amount of nitrogen incorporated mostly at the SiO₂/Si interface, where there exist more reactive strained bonds than in the bulk oxide or at the oxide surface.

This work was supported by SRC/SEMATECH under contract SRC91MC505 and the Science and Technology Center Program of the National Science Foundation (NSF Grant CHE-8920120)

REFERENCE:

- 1. F. J. Grunthaner, et al., J. Vac. Sci. Technol., vol. 16, p. 1443, 1979
- 2. F. J. Grunthaner, et al., , IEEE Nucl. Sci., vol. NS-27, p. 1640, 1980
- 3. R. P. Vasquez, et al., Appl. Phys. Lett., vol. 44, p. 969, 1984

Fig. 1 Three-dimensional plot of Si 2p and N 1s spectra vs. take-off angle for very thin reoxidized NH₃-nitrided SiO₂(top) and N₂O oxide (bottom).

oxide and Si substrate ($BE_{Si,oxide}$ - $BE_{Si,sub}$) and that between Si(2p) and O(1s) (BE_{oxygen} - $BE_{Si,oxide}$) in N₂O oxide as a function of take-off angle.

