Extended Abstracts of the 1992 International Conference on Solid State Devices and Materials, Tsukuba, 1992, pp. 668-670

Invited

SiGe/Si Heterostructures

Toru Tatsumi, Ken-ichi Aketagawa^{*}, Masayuki Hiroi, and Junro Sakai^{*}

Microelectronics Labs. NEC Corporation, 4-1-1, Miyazakidai, Miyamaeku, Kawasaki, Kanagawa 213, JAPAN * ANELVA Corporation, 5-8-1, Yotsuya, Fuchu, Tokyo,183, JAPAN

The conditions under which selective epitaxial growth (SEG) is achieved in UHV-CVD with Si_2H_6 are determined by the amount of Si_2H_6 molecules being supplied, and there is a critical gas supply amount (F_c) beyond which SEG will break down and lose its selectivity. The value of F_c is itself determined by two factors, growth temperature and the material used for masking, i.e. SiO_2 , Si_3N_4 . We found that this limiting factor of F_c was increased through the addition of a small amount of Cl₂, and that after such addition, the resulting decrease in growth rate is minimal.

1. INTRODUCTION

Ultrahigh vacuum chemical vapor deposition (UHV-CVD) using Si₂H₆, SiH₄, or SiH₂Cl₂ has many advantages, including low superature processing, $Ge_x Si_{1-x}$ alloy growth, and selective epitaxial growth become technology become important an for fabricating structure of ULSI's. SEG of Si or $Ge_X Si_{1-x}$ provides very fine self-aligned structures, as a layer d such self-aligned epitaxial base of bipolar transistors. Successful achievement of SEG has been reported for a SiH₂Cl₂ system. However, the growth rate with this SiH_2Cl_2 system. However, the growth rate with this SiH_2Cl_2 system was very low at low temperature under 700°C because the maximum growth rate was limited by the desorption of Cl from the Si surface. Si_2H_6 or SiH_4 UHV-CVD systems have better growth rates but SEG has ver to be achieved with converting has yet to be achieved with conventional type UHV-CVD systems, which have hot-wall isothermal furnace reactors. Hirayama et al. have reported that low temperature SEG was achieved below 600° C with pure Si₂H₆ in gas source Si-MBE with a liquid nitrogen shroud, but this low temperature SEG produced a consequently limited low growth rate, in the range of about 10A/min.²⁾ We report here on the conditions

We report here on the conditions critical to the achievement of SEG on SiO₂ or Si₃N₄ masked Si(100) substrates with a new cold-wall type UHV-CVD system. This water cooled cold-wall type growth chamber allowed us to achieve 1000A thich SEG on the SiO₂ masked Si(100) substrate at 650° C. Conditions for SEG were limited by the total amount of supply Si₂H₆ molecules. The critical gas amount (F_C), that at which SEG break down and loses its selectivity varied with variations in growth temperature and in the materials used for, such as SiO₂ or Si₃N₄. It was considered that the selectivity was made possible by the fact that with the cold-wall type UHV-CVD, few of the Si_2H_6 fragment formed by thermal dissociation and interrupted SEG were irradiated on the SiO_2 surface. We also found that F_C can be increased with minimal decrease in growth rate by the addition of a small amount of Cl_2 .

2. EXPERIMENTAL

UHV-CVD Our system included а Our UHV-CVD system included a stainless steel growth chamber, a water cooled jacket, and separate nozzles for Si₂H₆ and Cl₂. A 10001/s turbo-molecular pump reduced background pressure on the growth chamber to 1.5×10^{-9} Torr. 6-inch (100) Si wafers were masked with 2000A patterns of either SiO₂ or Si₃N₄. Wafers were precleaned with a chemical solution (NH₄OH:H₂O₂:H₂O=1:6:20) to form a protective thin oxide layer before loading into the growth chamber. The thin oxide layer on the Si surface was evaporated by a layer on the Si surface was evaporated by a thermal process, during which time the SieHe was supplied. The cleaning Si2H6 was supplied. The cleaning temperature was 800° C and Si₂H₆ temperature was 800° C and Si_2H_6 was supplied at 5SCCM with 10 sec within the was overall cleaning process time of 1 min. Successful SEG condition was confirmed by RHEED in the growth chamber.

The source gas, pure Si_2H_6 , GeH_4 and Cl_2 , first passed through a mass-flow cont roller and then into the growth chamber trough a nozzle without precracking. Si_2H_6 and GeH_4 pressure in the growth chamber was $7x10^{-4}$ Torr, and Cl_2 pressure was varied from $1x10^{-6}$ to $1x10^{-5}$ Torr.

3. LIMITING CONDITIONS FOR OF SEG

In our cold-wall type UHV-CVD system, poly-Si nucleation did not begin immediately. There was first a short period during which SEG was achieved. Figure 1 shows the length of this interval as a function of the Si_2H_6 flow rate at growth temperature of 650 °C. Interval length is inversely proportional to gas flow rate,

which means that the total amount of gas supplied over the course of an interval be a constant. This total amount of will supplied gas above which poly-Si nucleation occurs is the critical gas amount F_c . F_c can be expressed as $F_c = F \times t_c$ where F is Si_2H_6 flow rate and t_c is interval length. The condition at which SEG is interrupted predicted using this simple be can fomular. This relation suggests that there is a critical concentration of adatoms on surfaces which must be reached for SiO₂ poly-Si nucleation to start, since in the region of molecular flow the number of adatoms decomposed from Si_2H_6 molecules is closely proportional to the volum of gas supplied without adatoms desorption. On Si surfaces, a few percent of Si₂H₆ molecules decompose and contribute to epitaxial epitaxial growth, while on SiO₂ surfaces most of the molecules are reflected and probably only a portion decomposes small to remain as adatoms. So long as the concentration of these adatoms on the SiO_2 surface does not SEG exceed the critical value, will continue.

Figure 2 shows the critical gas amount (F_c) for SiO₂ and Si₃N₄ masking patterns as a function of the substrate temperature. With SiO_2 pattern and below 700°C, F_C deincreasing creased with increasin temperature independent of substrate gas flow increased rate because Si₂H₆ dissociation Above 700°C with SiO2 on the SiO₂ surface. pattern, Fc increases with substrate temperature because of the etching of the SiO_2 surface produced by decomposed Si_2H_6 . Tabe et al. have reported that at high growth temperatures, Si and SiO₂ reacts as, $Si+SiO_2->SiO_3$ and then adatoms evaporate the volatile SiO molecules. as

With a Si_3N_4 pattern, F_C was ten times smaller than that of for SiO_2 and decreased continuously with increasing temperature. This fact suggests substrate that, on a surface, Si2H6 Si3N4 dissociation efficiency is ten times larger than that on a SiO₂ surface and there is no reaction, which produce volatile molecules, between adatoms and surface. Using pure Si_2H_6 , the maximum SEG thickness (T_C) on SiO_2 and on SiO₂ 1000A patterns 100A, Si3N4 were and respectively at 650°C.

4. Cl₂ ADDITIONAL EFFECTS

When Cl_2 pressure was increased, F_C increased dramatically, while, there was little decrease in growth rate. Figure 3 shows F_C and growth rate dependences on Cl_2 flow rate at 650 °C. Si_2H_6 flow rate was 3SCCM. With 0.03SCCM Cl_2 addition which is 1/100 of Si_2H_6 flow rate, twenty times larger F_C was obtained on Si_3N_4 pattern than that without Cl_2 . Growth rate also decreased but when Cl_2 flow rate was was 0.03SCCM, 50% growth rate of the pure Si_2H_6 case was obtained.

Figure 4 shows F_C dependence on Si_2H_6 flow rate at 700°C. Cl_2 flow rate was OSCCM and 0.03SCCM. While F_C is independent of Si_2H_6 flow rate without Cl_2 addition, F_C varied as Si_2H_6 flow rate when Cl_2 flow rate is 0.03SCCM.

5.GROWTH of $Si_{1-x}Ge_x$ films

 $Si_{1-x}Ge_x$ was grown by use of Si_2H_6 and GeH₄. Figure 5 shows the source gas flow rate ratio dependence of the Ge fraction x of $Si_{1-x}Ge_x$. Under the condition of fixed

Fig. 2. Critical gas amount (F_c) for SiO₂ and Si₃N₄ masking patterns as a function of substrate temperature.

Fig. 3. Critical gas amount (F_c) for SiO₂ and Si₃N₄ patterns and growth rate dependences on Cl₂ flow rate at 650°C. Si₂H₆ flow rate was 3 SCCM.

Fig. 4. Critical gas amount (F_c) for SiO₂ dependence on Si₂H₆ flow rate at 700°C. Cl₂ flow rates were 0 and 0.03 SCCM.

total source gas flow rate and substrate temperature, the Ge fraction x increased monotonously as the GeH₄ flow rate ratio increased until x=0.3.

Figure 6 shows substrate temperature dependence of the Ge fraction. This result was obtained under the condition that the $Si_{1-x}Ge_x$ growth rate was changed with both the substrate temperature and the source gas flow rate ratio. In this temperature region, the Ge fraction depended only on the source gas flow rate ratio without the dependence on substrate temperature.

dependence on substrate temperature. Figure 7 shows the Arrhenius plots of Si and $Si_{1-x}Ge_x$ epitaxial growth rates. The source gases were supplied in sufficient so that the growth rate would be amounts by substrate temperature. limited the independent of the total flow rate of the source gases. The $Si_{1-x}Ge_x$ growth condition the same as the condition in Fig.4, was the Ge 0.13. The fraction where was activation energy for the Si growth rate and Sig.87Geg.13 growth rate were 47 and 27 Kcal/mol, respectively. Once we determined flow rate ratio, source gas the Ge the fraction was decided according to Fig.3 and was independent of substrate temperature, shown in Fig.4, inspite of the increase in growth rate with temperature, as in Fig.5. Taking advantage of this relationship, the Ge fraction can be controlled precisely by the control of the source gas flow rate ratio in this system.

6. CONCLUSION

The conditions critical to the achievement of SEG on SiO2 or Si3N4 masked Si(100) substrates were examined closely with a new water cooled cold-wall type UHV-This us CVD system. system allowed to achieve 1000A thich SEG on the SiO₂ masked Si(100) substrate at 650°C without halogen Conditions for SEG were limited by gases. the total amount of supply Si₂H₆ molecules. The selectivity was made possible by the fact that with the cold-wall type UHV-CVD, few of the Si_2H_6 fragment formed by thermal and dissociation interrupted SEG were irradiated on the SiO₂ surface. We also found that F_C can be increased with minimal decrease in growth rate by the addition of a small amount of Cl_2 . Under 7×10^{-6} Torr a small amount of Cl_2 . Under 7×10^{-6} Torr Cl_2 pressure at 650°C, ten times larger T_C was obtained with 50% growth rate of the pure Si₂H₆ case.

Acknowledgment

The authors wish to thank Drs. Y.Matsumoto and M.Nakamae for their suggestions and encouragement.

REFERENCES

 B. S. Mayerson, Appl.Phys.Lett.48,797 (1986).
H. Hirayama, T. Tatsumi, and N.

2)H. Hirayama, T. Tatsumi, and N. Aizaki, Appl. Phys. Lett. 51, 2213(1987).
3)M. Tabe, Jpn. J. Appl. Phys. 21, 534(1982).

Fig. 3. Source gas flow rate ratio dependence of the Ge fraction. The Ge fraction was increased monotonously with the GeH₄ flow rate ratio.

Fig. 4. The substrate temperature dependence of the Ge fraction. The Ge fraction was independent of the substrate temperature and depended only on the source gas flow rate ratio.

Fig. 5. Arrhenius plots of Si and $Si_{1-x}Ge_x$ epitaxial growth. Epitaxial growth was carried out under the condition that the growth rate was independent of total gas flow rate.