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Numerical Study of the Interference Effects of the Electron Waves Scattered
by Impurities in the Quasi One-Dimensional System
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We present a numerical method to investigate transport phenomena through a
region, where the obstacles are placed, in a quantum wire. Using the
method, the interference effects between the incident electron wave and
the electron wave scattered by the impurity have been investigated.
Transport phenomena through slits in a quantun wire have also been
studied.

1. IMBODUCTION
There have been increasing i.nterests in

the ballistic transport phenomena in quasi
one-dimensional systems. l-3 ) In these
systems, the positions of impurities play an
essential role in the quantum conduction,
because of the interference effects of
electron ltraves. Recent advances in the STM

and nanolithography techniques have made it
possible to place impurities on various
positions in the sample with dimensions
smaller than the mean free path. There has
been a great interest in the possibility of
realizing electron devices based on the
quantum mechanical behavior of electron,
where the interference of eleetron waves
plays an important role in their operation
principles. Several researchers have
numerically investigated the interference
effects in quantum wires with various
structures and potentials.4 ' 5 )

In this paper, we show a useful method
for studying the electron conduction through
a region containing a small- number of
impurities in the quasi one-dimensional
system by solving the Lippmann-Schwinger
equation. We have also studied the
interferenee effects of electron waves around
slits.

2. MODEL
. We consider a quantum wire consisting

of three regions, &s shown in Fig. 1, and
introduce the following tight-binding model:
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where Cn,n is the annihilation operator at
the lattiee site (n,n), t(<0) ttre hopping
integral between the nearest neighbors, {In
the confinement potential in the JFdirection
and vn,n the potential of the obstacle. The
eigenfunetions and the eigenvalues of
unperturbed Hamiltonian Ho can be written as
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Fig. t- Schematic illustration of the system. The
impq{ities exist only in region ii. The p'arameters M
and N are the lattice numbers for the y-direction of
the wire and for the x-direction of ihe region ii,
respectively.
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H=Ho+V, (1)



the lattice constant, I(=1,2,"') the mode of
the subband, and k the wave vecLor in the x-
direction. The coef f icients Q,. t ,n and the
subband energy t t can be obtained from the
Schrddinger equation;
td,1,2 * Utdt,t = Eldl,t ,

t(d\m+t * _dt,*-t) + U^d1,^= tldl,m (23m<M-1) ' (A)
td4M-t * Uyd4,y = €I&I,M

Following the Lippmann-Schwinger equation,
the wave function can be expressed as
(r,ml D = (n,^lQ*)

NM
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n'=l m'=1
where the wave vector kt(>O) j.s given by E =

t r+2 tcos( kta) . Green's function for the
unperturbed part I{o can be straightforwardly
calculated as
(n,^l co(r) ln',*'l = (n,ml#l n',*')

M 
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The quantity K j(>0) equals (I/ a)cos-1 [ (F
s j)/(2t)l for the propagating mode and
(L/ a)cosh-Ll(E- e i)/ Qt)l for the evanescence
mode. The total number of modes (sum of the
propagating and evanescence modes) is set to
the total number of the y sites, M. For
simplicity, we consider the case where t,he
impurities possess an infinitely strong
potentiar ( ta1000 l f l) and Un = 2ltl .

3. RESULTS AND DISCUSSION
(1) Transport phenonena through a quantun
wire containing two inpurities

Firstr we consider a quantum wire
containing two impurities which locate at the
center of the wire. The number of the
propagating mode is set to unity (Er = -1.99
I fl ). Figure 2 shows the conductance
eaiculated with the use of Landauer's
formula.l) As can be seen from Fig. 2, the
conductance oscillate as a function of a
distance between the two impurities. When
the distance between the two impurities
equals 29a + 85an/2 (n = 0,1,2,"'), a

y position of impurity 2 (a)

resonant tunneling can be observed. The
conduct,ance behavior is analogous to that
calculated analytically in the one-
dimensional systen containing two impurities
possessing weak potentials.

Next, w€ discuss transport phenomena

for the case where the two impurities are
located at the same x position and the number
of the propagating mode equals unity. Figure
3 shows the dependence of conductance on the
y positions of the two impurities as a
contour p1ot. The conductance is minimized
when the distance between the two impurities
is 7Oa, and the distance between the impurity
and the edge is 20a. The positions of the
minima of the conductance are unchanged in
the range of -1.996 to -1.986 I fl for the
Fermi energy, where the number of the
propagating mode equals unity. This
constancy is considered to indicate enough
stability for device applications, since a
device witl be insensitive to changes in the
Fermi energy within this rang'e.

(2) Quantun conduction through slits in a
quantun wire

0kada et aL. reported the measurement
of the angular distribution of electron
injected through a quantum point contact
using the two Schottky split gates system in
the presence of a magnetic field 8.6) In
this study, w€ have considered the quantum
mechanical effects for the double slit
system, using our numerical method, and
calculated results have been attempted to
compare with the experimental results.6) We

consider the quantum wire possessing two
slits which are sequentially arranged along
the x-direction, and the first and second
slits act as iniector and detector'
respectively. In our geometry, the effects
of the reflected waves scattered by the edges
can also be found, although the width of the
wire in the experiment is regarded to be
infinite. Since we have considered the case
of b0, we have calculated the eonductance as
a function of the .f position of the lower end

of the d.etector in order to compare these
results with the experimental findings in
which the conductance was observed as a
function of the magnetic field strength.
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Fig. 3. Contour
plot of the conduc-
tance for the two
impurities system,
where the x posi-
tion of the two im-
purities are |a. L
denotes the lowest
value of conduc-
tance. The width of
the wire is SLa.
The Fermi wave-
length is 85a.
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Fig.Z. Conductance plotted as a function of distance
between the two impurities. The two impurities are
located at the center of the wire. The Fermi
wavelength is 854. The width of the wire is 5la.
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Figure 44 shows the ca1culated conductance
for the double slit system, where one
propagating node is allowed to exist in the
injector. When the difference of the x
position between the injector and the

detector equals 2a, the calculated
conductance shows a single peak structure.
When the difference of x position between the
two slits becomes 5a, the edges of the
conductance curve rise. This is due to the
interference among the incident wave and the
scattered waves. We can easily notice the
interference effects in Fig. 4AI. When two
propagating modes are allowed to exi.st in the
injeetor (Fig. 48), the interference effects
are pronounced, compared with the single mode
case. This is because the magnitude of
momentum for the pdirection in the double
mode ease is larger than that in the single
node case. We can find a shoulder structure
around the eenter peak in Figs. 4BII and
4BIII. As the distance between the two slits
increases, the center peak gradually
disappears and the double peak strueture is
found (Fig. 4BI). The aspects in Figs. 4AI
and 4BI are considered to be analogous to
those in the experiment in both single and
double mode cases. Although it is necessary
to discuss the magnetic field dependence of
the conductance for precise comparison of the
calculation with the experiment, the
interference effects are correctly taken into
account in our calculations.

4. CONCLUSION
We have presented a numerical method to

study transport phenomena through a quantum
wire with various potentials in the ballistic
transport regime. We have calculated the
conduatance for the two impurities and two
slits systems precisely. Our formulation ean
also be extended to treat cases in which
nagnetic field is present.
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Fig. 4. Dependence of the quantum wire
conductance on detector location. The widths of the
wire, injector, and detector are 50a, 6a, and 6a,
respectively. The difference of the .r position
between the two slits is 8a (I),5a (II), and 2a (III).
The Fermi energy is -1.60 ltl (A) and -0.61 ltl (B).
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