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Wigner Function Model of Nonlinear Quantum Transport
in a Split-Gate Electron Waveguide
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The nonlinear quantum transport in a split-gate electron waveguide is simulated by
using the Wigner function model. First, the effects of the impurity scatterings on the
quantized conductance of the electron waveguide are studied. The decrease of conductance
and the deterioration of quantized steps due to the impurity scatterings are investigated.
After that, the nonlinear conductance at the large bias voltage and the possibility of the
transistor operation of the electron waveguide are discussed.

1.INTRODUCTION

An electron waveguide is a quantum wire that is
so clean and so small that electron waves can prop-
agate in guided modes. It is now possible to make
it using molecular beam epitaxy in conjunction with
high resolution electron beam lithography. The two
terminal electrical conductance of an electron waveg-
uide is quantized as a function of the width.! Re-
cently, we have succeeded in formulating the Wigner
function model, which has been a promising tool for
quantum transport modeling of quantum well elec-
tronic and optical devices,>® to simulate the quan-
tum transport in the electron waveguide for the first
time, and its static and dynamic behavior was ex-
amined in the linear ballistic transport regime.*) In
this paper, the effects of the impurity scattering on
the quantized conductance of an electron waveguide
are studied first in the linear transport regime. Next,
we will present the quantum mechanical simulation
on the nonlinear quantum transport of the electron
waveguide.

2.SPLIT-GATE ELECTRON WAVEGUIDE

In an electron waveguide with the split-gate HEMT
structure, electron waves are confined by applying
the negative bias voltage to the gate electrodes. As
a result, the one-dimensional(1D) constriction of the
electron waveguide gradually widens to embrace the
two-dimensional(2D) contact as shown in Fig. 1 (a).
In this paper, we assume that the gradual taper from
the 2D contact to the 1D constriction is ideal, so that
mode conversions and reflections at the interfaces are
negligible. To model such an ideal 2D contact, the
reservoirs are assumed to be attached to the 1D con-
striction as shown in Fig. 1 (b). For the infinite-
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confining potential in the transverse y and z direc-
tions, the following one-dimensional Liouville equa-
tion for the Wigner function is solved in the electron

waveguide.*)
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Fig. 1 Split-gate electron waveguide. (a) Configuration
of the 1D constriction in the electron waveguide. The
shaded patterns indicate the split-gate electrodes. (b)
Simulation model of the electron waveguide with the
reservoirs.



where F, is the Wigner function integrated over the
transverse momenta and coordinates for the n - th
mode. F? is the normalized distribution function in
thermal equilibrium and < 7,,(k;) > is the relaxation
time for the n-th mode electron. When the quantized
conductance of the electron waveguide is discussed
at low temperature, only the impurity scattering is
taken into consideration in the formulation of 7,(k.).

For an electron waveguide with the dimensions of
L,, L,, and L,, the boundary conditions for the n-
th mode Wigner function at the left and the right
boundaries are given by

Fu(0,k;) = 2fFD(k::k§:’rci) , k>0 (2)
Fo(La, ka) = 2frp(kz, &y, kD), k.<0  (3)

where fpp is the Fermi-Dirac distribution function
characterized by the Fermi level Fy, the tempera-
ture T. k™ and k! are the quantized wavenumbers
in the y and z directions, respectively. The Liouville
equation (1) is solved numerically based upon the
finite-difference method as discussed in Ref. 4.

3.QUANTIZED CONDUCTANCE OF AN
ELECTRON WAVEGUIDE

First, the two-terminal conductance of an electron
waveguide with the impurities is calculated. The ion-
ized impurities are assumed to be 15nm away outside
from the center of the waveguide bottom and dis-
tributed straight in the transmission direction. The
depth of the waveguide L, is 30nm. The Fermi en-
ergy Fyis 10meV and the temperature 7' is assumed
to be 0K. The applied bias voltage V is given as
504V, so that the electron waveguide operates in
the linear transport regime. Fig. 2 (a) shows the
calculated two-terminal conductances of the electron
waveguide as a function of the width. The impu-
rity density Np is given as 10°%cm™, 10%cm™! and
4 x 10°m™. The dotted line indicates the ideal
quantized steps without any scatterings. The de-
crease of conductance and the deterioration of quan-
tized steps due to the impurity scatterings are found
to become more conspicuous as the impurity den-
sity increases. When Np is more than 10%cm™!, the
steps of quantization disappear due to the strong im-
purity scatterings. Next, we compare our quantum
transport model with the classical transport model
represented by using the electron mobility. In the
classical model, the conductance is obtained by the
following equation.
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where u, is the electron mobility estimated by the
relaxation time due to the impurity scatterings and
N, is the one-dimensional electron density. The con-
ductances calculated by the equation (4) are shown
in Fig. 2(b). In the classical model, the conductance
takes an extremely high value for the small impurity
density because the electron mobility becomes very
large. On the contrary, in the Wigner function model
shown in Fig. 2 (a), the conductance is limited to its
quantized value. As the impurity density increases,
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Fig. 2 Comparison between the Wigner function model
and the classical model. Conductances are calculated
by (a)the Wigner function model and (b)the classical
model for the impurity densities of 10%cm™!, 108cm™?!
and 4 x 106cm™!,

the conductance decreases in both models. It should
be noted that in case of Np = 4 x 10%m™!, the two
models give almost the same conductance. The dips
in conductance are seen for the waveguide wider than
150nm, that will occur when electrons in the lower
modes are coupled strongly to the higher mode trav-
eling backward.

4.NONLINEAR QUANTUM TRANSPORT
OF AN ELECTRON WAVEGUIDE

We further examine the nonlinear quantum trans-
port of the electron waveguides at the large bias volt-
age. First, the current-voltage characteristics of the
waveguide in Fig. 3(a) are simulated at 0K. In Fig.
3(a), the ionized impurities are assumed to be dis-
tributed two-dimensionally in the plane parallel to
the waveguide layer. The impurity density is given as
2.8 x 10cm™ and the distance between the waveg-
uide and the impurity layer zy is 100nm. Fig. 3(b)
shows the I-V curves for various waveguide widths,
where L, is varied around the first step in Fig. 3(a).
44nm corresponds to the rising of the first step, 60nm
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Fig. 3 (a)Calculated conductance of the electron waveg-
uide with the two-dimensional impurity layer. (b) Cal-
culated current-voltage characteristics of the electron
waveguide at 0K for various waveguide widths. The
dotted line indicates the relation of I = (2¢?/h)V.

the center of the first plateau, and 80 and 81nm the
onset of the second step. The dotted straight line
indicates the relation of the perfect quantization of
conductance given by I = (2¢2/h)V. Even for 60nm
as well as other width, the I-V curves are found to
deviate from the dotted line as the applied voltage
increases. This is due to the fact that the electron
waves are reflected more by the potential variation
in the constriction as the bias voltage becomes large.
Such a nonlinear behavior has been reported experi-
mentally in the quantum point contact structure.?
Next, we will discuss the possibility of the transis-
tor operation of the electron waveguide at room tem-
perature. To include the various scattering processes
in addition to the impurity scatterings at room tem-
perature, 0.1ps of the relaxation time is assumed sim-
ply for all waveguide widths. Fig. 4 shows the calcu-
lated current-voltage characteristics of the electron
waveguide at room temperature for various waveg-
uide widths. At a small applied voltage, the cur-
rent flows in proportion to the bias voltage. How-
ever, due to the balance of acceleration and reflec-
tion of electron wave caused by the electric field,
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the current saturates at the high voltage. In ad-
dition, the saturation current is found to increase
with the waveguide width L,. This is because the
amount of electrons propagating in the transmission
direction increases with L, due to the decrease of
the quantized energy in the y direction according to
Er = (nhr)?/(2m*L). Such a FET-like transistor
operation will be expected in the split-gate struc-
ture, since the waveguide width can be varied by the
external gate voltage.
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Fig. 4 Calculated current-voltage characteristics of the
electron waveguide at room temperature for various
waveguide widths.

5.CONCLUSION

The linear and nonlinear quantum transport in
electron waveguides was studied by using the Wigner
function model. In the linear transport regime, the
decrease of conductance and the deterioration of quan-
tized steps due to the impurity scatterings were dis-
cussed at low temperature. In the nonlinear trans-
port regime, the nonlinear behavior of an electron
waveguide was first simulated at low temperature.
Further, the possibility of the transistor operation
of an electron waveguide was demonstrated at room
temperature.

In the Wigner function model described above, the
lateral discontinuities at the contact electrodes in the
split-gate structure, and the space charge effects in
the waveguide are not included. Further study on
these two problems will be necessary to analyze the
practical waveguide devices.
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