Evaluation of Structurally Metastable Iron-Boron Pairs in Silicon

H. NAKASHIMA, T. SADOH, and T. TSURUSHIMA

Department of Electrical Engineering, Kyushu University,
Fukuoka 812, JAPAN

Structurally metastable Fe$_7$-B$_2$ pairs in Si have been for the first time detected by using dark or photo capacitance-transient technique combined with minority-carrier injection below 200 K. Five levels at $E_C = 0.43$ eV, 0.46 eV, 0.52 eV, and 0.54 eV and $E_V + 0.53$ eV are observed as the metastable defects. The annihilation behaviors have been investigated by isochronal and isothermal anneals. From these investigation, the pair configurations responsible for these defect levels are proposed.

1. INTRODUCTION

Iron is a principal contaminant during Si device fabrication. Because of its high diffusion coefficient, Fe ions are unstable at room temperature and tend to form complexes with other impurities. In B-doped p-type Si, the mobile interstitial Fe$_7^+$ is captured by substitutional B$_2^-$, forming Fe$_7$-B$_2$ pair which has the structure of Fe$_7$ on the 1st nearest tetrahedral (T_d) site adjacent to B$_2$. It is well established that the level at $E_V + 0.1$ eV is due to a donor (Fe$_7^+/B_2^-$) of the 1st nearest Fe$_7$-B$_2$ pair and that at $E_V + 0.4$ eV is due to a donor (Fe$_7^{0/+}$) of the isolated Fe$_7$.

According to the ion pairing theory, the pair formation causes pushing of Fe$_7$ donor level towards the conduction band, and thus the 1st nearest Fe$_7$-B$_2$ pair should have an acceptor level (Fe$_7^{0/++}B_2^-$). Recently, we have confirmed using the photo capacitance technique that the level at $E_C = 0.29$ eV is due to the 1st nearest site Fe$_7$-B$_2$ pairs. In addition, Gehlhoff and Rehse have found a negative charge state of the trigonal Fe$_7$-B$_2$ pairs by using photo electron paramagnetic resonance (EPR), which cause an acceptor level at $E_C = 0.25 \pm 0.05$ eV. From these new results, it is clear that the acceptor level around $E_C = 0.29$ eV is due to the 1st site Fe$_7$-B$_2$ pairs.

The pairs dissociate even below room temperature by minority-carrier injection from n^+p junction. This implies that Fe$_7^+$ ions jump from the 1st nearest site to another by obtaining the recombination energy. If low-level injection is carried out at such a low temperature that Fe$_7^+$ cannot thermally migrate, it should be possible that Fe$_7^+$ ions remain at structurally metastable sites bounded to B$_2^-$. Thus, it is expected that energy levels for the metastable sites emerge between the acceptor level of the stable 1st nearest site Fe$_7$-B$_2$ and the donor level of the isolated Fe$_7$. However, the metastable defects have not yet been confirmed experimentally. We have for the first time succeeded in detecting the metastable Fe$_7$-B$_2$ pairs. In this paper, we present on the annihilation behaviors of the metastable Fe$_7$-B$_2$ pairs in Si by using dark or photo capacitance methods combined with minority-carrier injection below 200 K.

2. EXPERIMENTAL

We employed a mesa-type Fe-doped n^+p junction sample (B content: 1.0 $\times 10^{14}$ cm$^{-3}$; Fe content: 3 $\times 10^{13}$ cm$^{-3}$). The sample size is 3.5 \times 3.5 \times 0.5 mm3. A cylindrical cavity with diameter 2 mm was made from the back surface to the front. The effective sample thickness was about 0.1 mm.

The technique for detecting minority-carrier trap is as follows: The back surface of the n^+p diode reverse-biased at $V_R=10$ V was illuminated with He-Ne laser light (power: 10 mW; wavelength: 0.63 μm; absorption depth: 3 μm), which was led to the cavity of the sample by an optical fiber. This procedure enabled us to introduce only minority carriers in the depletion region. When the optical source was switched off, electron emission from minority-carrier trap occurred at appropriate temperature, and thus the emission process could be observed by recording the capacitance change after the illumination. Majority-carrier trap was observed by recording the capacitance change with $V_R=10$ V after applying zero bias in darkness. The capacitance technique were used deep level transient spectroscopy (DLTS), thermally stimulated capacitance (TSCAP), and single shot. Minority-carrier injection was accomplished using a constant current source in series with the diode.
Fig. 1. TSCAP signals for (a) electron- and (b) hole-trapping levels for Fe-doped p-type Si. The inset shows DLTS signals. Solid line: before injection; broken line: after the injection of $J_F = 10 \text{ mA/cm}^2$ for 200 s; dash-dotted line: after annealing at 210 K for 10 min following the injection. The TSCAP signal represents the capacitance difference between upward scan data and downward data. The TSCAP signals were obtained after illuminating 0.03 μm light at 80 K and applying the zero bias at 130 K, respectively. The DLTS signals were generated under a gate setting $t_1/t_2 = 0.02/0.2$ ms.

3. RESULTS AND DISCUSSION

Typical TSCAP and DLTS results before and after injection at 150 K are shown in Figs. 1(a) and 1(b), where electron- and hole-trapping levels are labeled 'E' and 'H', respectively. Only two levels E_1 at $E_C - 0.29$ eV and H_1 at $E_V + 0.10$ eV are observed before the injection. The levels are due to an ambipolar center of the 1st nearest Fe$_{B_1}$-B$_2$ pairs. By contrast, the injection leads to strong decrease of E_1 and H_1 and to emergence of four electron-trapping levels E_2-E_5 and a hole-trapping level H_2. The level E_4 annihilates after annealing at 210 K, as shown by the dash-dotted line in Fig. 1(a). The level positions determined from single shot measurements are as follows: E_5: $E_C - 0.43$ eV; E_3: 0.46 eV; E_4: 0.52 eV; E_5: 0.54 eV; H_2: $E_V + 0.53$ eV.

Figures 2(a) and 2(b) show the results obtained from the isochronal anneals for 10 min at zero bias. For the case of weak injection (Fig. 2(a)), levels E_2, E_3, and E_4 are created. The level E_4 vanishes at low temperature of 205 K. Its annihilation leads to the increase of E_3 and E_2 but does not lead to the increase of E_1, suggesting that the thermal return path is $E_4 \rightarrow E_2$ and E_3. The level E_3 annihilates at around 220 K. Since its annihilation causes the increase of E_1, the path is $E_3 \rightarrow E_1$. The level E_2 shows the stable behaviors vanishing at around 240 K, and the path is clearly $E_2 \rightarrow E_1$.

For the case of moderate injection (Fig. 2(b)), levels E_5 and H_2 are also observed. The level E_5, as well as E_2, is thermally stable defect. Though the path for E_5 is ambiguous from the isochronal data, the isothermal anneal results at 230 K after the injection reveal that the return path is $E_5 \rightarrow E_1$. All these levels E_2-E_5 rapidly disappear within 15~20 K from the onset of the annihilation. By contrast, the disappearance of level H_2 proceeds slowly in the wide temperature range 200-230 K, indicating that the level H_2 consists of two components due to trap H_2^* vanishing at around 215 K and trap H_2 vanishing at 230 K. The annihilation of traps H_2^* and H_2 lead to the increase of trap E_2, indicating that these traps return to E_2, i.e., probably $H_2 \rightarrow H_2^* \rightarrow E_2$.

In order to investigate jumping process of Fe^{+} on each structurally metastable site, isothermal anneals under
TABLE I. Annihilation temperature \(T_{\text{ann}} \), thermal return path, diffusion barrier height \(E_D \), and level positions \(E^{\text{pp}}_p \) obtained from the experiment and \(E^{\text{DD}}_p \) from the calculation for metastable Fe\(_i\)-B\(_s\) pairs.

<table>
<thead>
<tr>
<th>trap</th>
<th>path</th>
<th>(T_{\text{ann}}) [K]</th>
<th>(E_D) [eV]</th>
<th>(E^{\text{pp}}_p) [eV]</th>
<th>(E^{\text{DD}}_p) [eV]</th>
<th>site</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E1)</td>
<td>(E2)</td>
<td>242</td>
<td>0.75</td>
<td>(E_C - 0.29)</td>
<td>(E_C - 0.43)</td>
<td>(1st) (T_d)</td>
</tr>
<tr>
<td>(E2)</td>
<td>(E1)</td>
<td>223</td>
<td>(E_C - 0.46)</td>
<td>(E_C - 0.54)</td>
<td>(2nd) (T_d)</td>
<td></td>
</tr>
<tr>
<td>(E4)</td>
<td>(E2), (E3)</td>
<td>204</td>
<td>(E_C - 0.52)</td>
<td>(E_C + 0.53)</td>
<td>(?)</td>
<td></td>
</tr>
<tr>
<td>(E5)</td>
<td>(E2)</td>
<td>238</td>
<td>(E_C - 0.54)</td>
<td>(E_C - 0.55)</td>
<td>(4th) (T_d)</td>
<td></td>
</tr>
<tr>
<td>(H2^*)</td>
<td>(E2)</td>
<td>215</td>
<td>(E_C + 0.53)</td>
<td>(3rd) (T_d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Decay rates \(R \) of traps \(E2 \), \(E3 \), \(E4 \), and \(E5 \) as a function of reciprocal temperature. The broken lines represent \(R \) of traps \(H2 \) and \(H2^* \).

zero bias were carried out. The decay rates \(R \) for traps \(E2-H2 \) are obtained in Fig. 3 as a function of temperature \(T \); they can be fitted by the following expressions:

\[
R_{E2} = 1.3 \times 10^{13} \exp \left(-0.75 \, eV/kT \right) \, s^{-1},
\]
\[
R_{E3} = 1.9 \times 10^{14} \exp \left(-0.74 \, eV/kT \right) \, s^{-1},
\]
\[
R_{E4} = 5.6 \times 10^{14} \exp \left(-0.70 \, eV/kT \right) \, s^{-1},
\]
\[
R_{E5} = 1.1 \times 10^{13} \exp \left(-0.73 \, eV/kT \right) \, s^{-1},
\]
\[
R_{H2^*} = 6.0 \times 10^{12} \exp \left(-0.65 \, eV/kT \right) \, s^{-1},
\]
\[
R_{H2} = 3.9 \times 10^{12} \exp \left(-0.68 \, eV/kT \right) \, s^{-1}.
\]

The rates except for \(R_{E3} \) and \(R_{E4} \) seem to originate from the barrier to atomic motion of \(\text{Fe}_i^+ \) ion from one configuration to another because the preexponential factors are indeed in the range \(10^{12} - 10^{13} \, s^{-1} \) expected from a single jump process. The thermal activation energies \(E_D \) obtained are rather larger than that \((0.66 \, eV) \) of free \(\text{Fe}_i^+ \) determined in the range \(273-1343 \, K \). This might be related to the lattice strain in the vicinity of \(B_S \).

We discuss the positions of \(\text{Fe}_i^+ \) in the vicinity of \(B_S \). Most stable sites should be \(T_d \) interstitial sites because of large metallic radius of \(\text{Fe}_i \). Thus, we suggest that thermally stable traps \(E2 \), \(E5 \), and \(H2 \) are attributed to \(T_d \) sites in the vicinity of \(B_S \). The level positions \(E^{\text{DD}}_p \) of \(\text{Fe}_i^+ \) at the \(T_d \) sites are calculated using the configuration coordinate description based on the simple ionic model. The experimental and calculated results are summarized in Table I. Among the \(T_d \) sites in the vicinity of \(B_S \), \(\text{Fe}_i^+ \) on the 2nd and 4th sites are back to the 1st site by a single jump, while \(\text{Fe}_i^+ \) on the 3rd site returns to the 2nd site. From this consideration and the correspondence of the level position \(E^{\text{DD}}_p \) to \(E^{\text{pp}}_p \), traps \(E2 \), \(H2 \), and \(E5 \) can be assigned to the 2nd, 3rd, and 4th sites, respectively. Since the annihilation of the traps \(E3 \), \(E4 \), and \(H2^* \) are fast, these traps seem to be attributed to unstable positions such as the hexagonal site or quite different sites due to lattice strain in the vicinity of \(B_S \).

4. SUMMARY

We have studied the structurally metastable \(\text{Fe}_i\)-\(B_s \) pairs in Si by using dark or photo TSCAP and single shot techniques combined with minority-carrier injection. From the investigation of isochronal and isothermal anneals for the metastable defects, electrical and thermal properties of the metastable defects have been characterized. It is proposed that levels at \(E_C - 0.43 \, eV, E_V + 0.53 \, eV \) and \(E_C - 0.54 \, eV \) are originated from \(\text{Fe}_i^{+1/2} \) of the 2nd, 3rd, and 4th nearest \(T_d \) sites adjacent to \(B_S \), respectively.

References