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ABSTRACT

. Si-compatible detectors are lmong the mos! promising infrared (IR) sensors for large focal
glang alray applicatig.nq becluse they ca3. be easily- integratEd with Si WSI readour multi"ple*rti.
Furthermore, .by.ltilizing the mature Si procesdilg-ldchnofogies, they provide advantiges of,l{fo"qtl; leliabilt^ty,.and low cost. State-of-the-artpi-Si focatpline ar.ayi, wittr array sizes oi6+O x
480 and LO24 x L024 have been previously demonstrated by several lompanies, ilroviding htgh
resolution IR upagrng in the l-S q1r region ailll<. Extrinsic Si detectors, such as SiiAs IBC, pTo"lf,-
a wide responsive spectrum (cutoff at28 pm) operating at <12K.

There is a grelt_inte_rest in developing li-gompatible detectors responsive in the 8-14 pm long
wavelength infrared (LWIR) region with a trigher temperatures (> 65 K). One approach involvei
reducing the effective PtSi Schottky -barrier by incorporating a p+ doping spiii at the ptSi/-Si
interface. Previous barrier-reduction-efforts inv6lved the incorforation of a titaiively thick (t5-0Ai
p+ layer at-the PtSi/Si interface which creates a potential spike near the PtSi/Si interface for
tunneling. {oweyer, the detector performance was greatty de}raded due the additional tunneling
proceLs required for IR detection, and the detector dark cunentlvas drastically increased due to rhE
tunneling contribution.

In.this.paper, we demonsrated thatby thinning the^p+ layer lo - 10A, the effective Schottky
buTtT heights can be reduced without thd formati6n of^a poiential spike, and consequently, thl
undesired tunneling process san be eliminated. This ap'proach requires significaiity tiigttet
concentrations of the spikes -(:. tg10 cq-l): atomically sharp doping profiles, and low growth
temperanres' a1d Y{.aTomplished by ggii.zing molecuiarbeam epiiax! (UnEl growth techiiques.
The doping-spike PtSi detectors were fabrica6d on double-side polishe'O Si (fOOl wafers with a
resistivity.of 3-0 C)-cm. The 10_-A-$ry.t.p*-Si layers- were grown by MBE at 450 oC using elemental
boron as the dopaT^t source_. Ilre IISi llyers were formed-i n-situ-by depositing 

"nOop"E 
Si and pt

followed by annealing at 400oC. The dark current characteristics of the bopingl5pitiFiSi derectors
were found to be thermionic emission limited, given by Jo = A** fe expl-U/eAq. The d.erector
spectral responses were measured with back-side ittuminatibn using a 94dK titactUbOy source. By
varying the doping concentations of the l-nm-thick doping spikes from lx 1020 c--3 to 2 x 102b
cq'3, PtSi cutoff wavelenglhs were successfully exte4ded to 1+, t8, and 22 ytmfor the first time, with
effective optical potential barriers 9f 0.09,_0.069, and 0.057 eY, determined by Fowler pio6, with
C1's comparable to those of conventional PtSi detectors with similar PtSi thickneises. 

I

In conclusion, we have extended the cutoff wavelength of doping-spike PtSi IR detectors to the

LyfR region by-incorporating a l0-A-thick p+ MBE aoping spiie *t tir" silicide/silicon interface.
The cutoff wavelength increaies with increaiing.doping^coicentradon of the doping spikes. The
tailorable cutoff wavelength allows the optimiza-tion'of ihe rade-off between the^ipJrrrii r"sponse
and the cooling requirements.
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Calculated energy-band diagrams of nro doping-spike PtSi detectors with a 0.1 eV

effective banier-heighu (a) wittr a 50-A-thict spr\i doped ryith 6 x 1018 cm-3

boron, which resultiin a potential spike at the PtSVSi interface, and (b) with a 10-

A-ttricqspike doped with L.2x 1020 cm-3 borcn. No potential spike is formed for
the lGA-thick doping-spike PtSi detector.
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Figure 2. Richardson plot of a tlpical doping-
spike PtSi detector with a22 Stmcutoff
wavelength whose photoresponse is shown in
Fig. 3.
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Figure 3. Quantum efficiency as a function of
wavelength for the three doping-spike PtSi
detectors with 1-nm-thick p+ doping spikes
measured at 40K. The cutoff wavelengths can
be tailorable from 14 to 221tm by increasing
the p* spike doping concentration from lx 1020

to2x 1020cm-3.
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