Concave-DMOSFET: A New Super Low On-Resistance Power MOSFET

Norihito TOKURA, Tsuyoshi YAMAMOTO, Mitsuhiro KATAOKA, Shigeki TAKAHASHI and Kunihiko HARA

Research and Development Dept., Nippondenso Co., Ltd. 1-1 Showa-cho, Kariya-city, Aichi-pref. 448 Japan

A new super low on-resistance power MOSFET is presented. The new transistor "Concave-DMOSFET" has a concave channel structure fabricated not by trench etching technique, but by a combination of local oxidation of silicon (LOCOS) and diffusion self alignment (DSA) using oxide film as a double diffusion mask. The Concave-DMOSFET based on 16 μ m cell design has been fabricated for the first time, and the specific on-resistance of 75m $\Omega \cdot \text{mm}^2$ with breakdown voltage of 50V has been achieved. This value is the lowest ever reported for power MOSFETs of comparably same design rule.

1. INTRODUCTION

A specific on-resistance (R_{sp}) of low-voltage planar-DMOSFET has been significantly reduced by decreasing microcell pitch. But, the optimum value of the pitch providing lowest R_{sp} exists between 10 and 15 μ m¹⁻²⁾. This is because JFET resistance (r_{JFET}) increses in accordance with scaling down of cell pitch and becomes dominant component of on-resistance. A trench-DMOSFET, in which r_{JFET} component is eliminated, has overcome planar-DMOSFET in $R_{sp}^{3)}$. However, sharp corners of trench structure degrade device breakdown voltage (BV_{DS}), and trench-DMOS process including reactive ion etching (RIE) has not been controlled sufficiently yet⁴). Some RIE damage is left on the trench walls through ion etching process, and the damage results in degradation of channel mobility⁵).

A concave structure can be formed by LOCOS technique⁶⁾. Therefore LOCOS process is expected to solve the problem of trench-DMOS process such as sharp corners on the wall. And we have shown fundamental feasibility study of LOCOS based new DMOS technology by means of numerical simulation⁷⁾.

We have successfully developed new low on-resistance power MOSFET based on LOCOS process for the first time, and it was named as Concave-DMOSFET by the authors. In this paper, we will show the features and characteristics of fabricated Concave-DMOSFET.

2. DEVICE SIMULATION

Fig.1 shows 2-D device simulation model of half unit cell of n-channel Concave-DMOSFET compared with that of planar-DMOSFET. Cell pitch was selected as 12μ m, because it was nearly the optimum value of minimum R_{sp} of planar-DMOSFET. Device parameters of Concave-DMOSFET were equal to optimized those of planar-DMOSFET except for concave structure. The concave structure eliminates r_{JFET}, which is the main component resistance in planar-DMOSFET, and reduces the R_{sp} of Concave-DMOSFET drastically.

According to our simulation, R_{sp} was $50m \Omega \cdot mm^2$ for Concave-DMOSFET and $80m \Omega \cdot mm^2$ for planar-DMOSFET under the conditions of gate voltage (V_{GS}) and drain voltage (V_{DS}) being 10V and 0.6V. The threshold voltage (V_{TH}) and BV_{DS} were 1.8V and 52V for both models. From these simulated results, R_{sp} of Concave-DMOSFET was estimated as about 40% lower than that of planar-DMOSFET.

(a)Concave-DMOSFET(R_{sp} =50m $\Omega \cdot mm^2$)

(b)planar-DMOSFET(R_{sp} =80m $\Omega \cdot mm^2$)

Fig.1 Device simulation models of half unit cell. Cell pitch is 12μ m. The r_{ch} , r_{acc} , r_{JFET} and r_{drift} are channel, accumulation, JFET and drift resistance respectively. The structure of Concave-DMOSFET eliminates r_{JFET} and reduces the on-resistance. BV_{DS} is 52V for both models.

3. EXPERIMENTS

A (100) oriented silicon wafer which had n⁻ epilayer with 1×10^{16} cm⁻³ phosphor doping was used as a substrate. First of all, Si₃N₄ film was deposited as an local oxidation mask. After patterning of Si₃N₄ film, oxidation of silicon was carried out in order to form the concave structure of 0.9 μ m depth. Then, double diffusion (DSA) using LOCOS SiO₂ mask and 0.5 μ m channel were formed along side surface of the concave. After removing LOCOS SiO₂ film, gate oxide and electrode were successively formed. Finally, source and drain electrode were formed by conventional evaporation technique.

Fig.2 shows a cross sectional view of fabricated 16 μ m×16 μ m square unit cell. In the figure, depth and width of the concave are 0.9 μ m and 4 μ m respectively. Side wall surface of the concave is (111) oriented. Gate oxide film of 60nm thickness uniformly covers the concave surface. Fig.3 shows the picture of the fabricated Concave-DMOSFET chip in which 13135 cells are integrated, and its active area (S_A) is 3.36mm².

Fig.2 A SEM photomicrograph of cross sectional unit cell structure of fabricated Concave-DMOSFET.

Fig.3 A picture of the 2.5mm \times 2.5mm Concave-DMOSFET. 13135 cells are integrated. Unit cell pattern is 16μ m \times 16 μ m square.

Fig.4 I-V characteristics of the Concave-DMOSFET. Specific on-resistance is $75m \Omega \cdot mm^2$ (V_{cs}=16V).

Fig.5 Breakdown characteristics of the Concave-DMOSFET. Breakdown voltage is 50V.

4. RESULTS AND DISCUSSION

I-V characteristics of linear region is shown in Fig.4. From the operating point (112mV,4990mA) on the line of V_{GS} =16V, R_{SP} calculated by (V_{DS}/I_D) *S_A was 75m $\Omega \cdot mm^2$. Under the condition of V_{GS} =10V, R_{SP} was 85m $\Omega \cdot mm^2$ given by the same way, and the value is good agreement with R_{SP} of 89m $\Omega \cdot mm^2$ estimated by the same simulation for 16 μ m cell pitch model. V_{TH} was 1.2V, which was lower than 1.8V of the device simulation. Drain breakdown characteristics is shown in Fig.5. BV_{DS} was measured as 50V, which was reasonably equal to simulated value.

Effective mobility of the channel was $260 \text{ cm}^2/\text{V} \cdot \text{s}$ under the condition that electric field in gate oxide was 1MV/cm. This value is comparably high with that of planar-DMOSFET.

5. CONCLUSION

We demonstrated a new super low on-resistance power MOSFET, named as Concave-DMOSFET, which realizes drastic R_{sp} reduction of 40% compared with conventional planar-DMOSFET. The Concave-DMOSFET has been successfully fabricated for the first time and achieved the lowest R_{sp} of 75m $\Omega \cdot mm^2$ for 16μ m cell power MOSFETs. The lowest R_{sp} has been realized by means of Concave-DMOS technology, which eliminates R_{JFET} and provides damage less concave surface resulting high channel mobility.

Concave-DMOSFET promises a great improvement in power loss of power MOSFETs operated under high power switching.

REFERENCES

- 1)B.J.Baliga: Ext. Abs. 22nd SSDM (1990) 5
- 2)B.J.Baliga: IEEE Trans. Electron Devices, <u>ED-38[7]</u> (1991) 1568
- 3)C.Bulucea and R.Rossen: Solid-State Electronics, <u>34[5]</u> (1991) 493
- 4)H.-R.Chang, R.D.Black, V.A.K.Temple, W. Tantraporn and B.J.Baliga: IEEE Trans. Electron Devices, <u>ED-34[11]</u> (1987) 2329
- 5)S.J.Fonash: Solid State Technol., 28[4] (1985) 201
- 6)H.Sakai, T.Yoshimi and K.Sugawara: J.Electro chem. Soc. Solid-State Sci. and Technol., <u>124[2]</u> (1977) 318
- 7)N.Tokura, S.Takahashi and K.Hara: IEEE Proc. of ISPSD'93, <u>93CH3314-2</u> (1993) 135