Extended Abstracts of the 1994 International Conference on Solid State Devices and Materials, Yokohama, 1994, p. 455

Invited

Present Status and Future Prospects of Quantum Structure Materials and Devices

Hiroyuki SAKAKI

RCAST, Univversity of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan Quantum Transition Project, JRDC 4-7-6 Komaba, Meguro-ku, Tokyo 153, Japan

Material science and fabrication technology of quantum structure materials have been advanced step by step every year. They have recently reached a stage where several new material systems and new quantum sructures with nm-scale lateral definitions can be reproducibly prepared. We review briefly these developments and discuss their possible impacts on both conventional and novel semiconductor devices. We examine, in particular, a few epitaxial methods to prepare nm-scale quantum wires and boxes and clarify both advantages and drawbacks of each approach.

