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Bffects of a Compositionally Graded In*Ga1-*As Base

in Abrupt-Bmitter InP/InGaAs HBTs
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NTT LSI Laboratories
3-l Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-01, Japan
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We report the role a compositionally-graded In1Ga1-1As base plays in upgrading the
performance of abrupt-emitter InPAnGaAs HBTs. The built-in field in the base enables a more
than 50Vo improvement in current gains, compared to a uniform-base structure. The peakft
for the graded-base HBT is L43 GHz versus l2l GHz for the uniform-base HBT.
Furthermore, the graded-base stnrcture exhibits anf^*, over 200 GHz even atVgg as low as
1V.

1. Introduction

In InP[nGaAs and InAlAs/InGaAs HBTs, hor
electron injection from the abrupt emitter-base junction
provides quasiballistic transport across the p+ base
regionl-3) and is expected to reduce the base transit
delay markedly. However, a recent theoretical study4)
shows that a small amount of large-angle scattering in
the base degrades electron transport properties by
building up the steady-state population of energy-
relaxed electrons. The average electron velocity is
decreased over the whole base region as a result of the
backward diffusive motion of the relaxed electrons.5)
To take full advantage of the nonequilibrium electron
transport, therefore, the built-in field in the base is
indispensable in terms of sweeping the energy-relaxed
electrons out towards the collector. In this study, we
describe a new hybrid base structure5) that consists of
an abrupt emitter-base junction and a compositionally
graded In*Ga1-1As base, and show how the proposed
structure can improve the DC and RF performance of
InPAnGaAs HBTs.

2.Layer Stnrcture

The graded-base HBTs (hereafter referred to as GB-
HBTs) were glown on 2-inch-diameter semi-insulating
(001) InP substrate by low-pressure MOVPE.
Microwave transistors with emitter metal size of l.Zx5
Vmz were fabricated using the self-aligned process
reported elsewhere6). Schematic band diagram and
layer strFcture parameters are shown in Fig. I and Table
I, respec\ively. The base is 650-4. thick and doped to p

c-6-1

= 4 x 1019 cm-3 with Zn. The InAs fraction in the
pseudomorphic In*Ga1-1As base is linearly decreased
from x = 0.53 to 0.46 towards the emitter-base
junction. The potential drop across the graded layer is
40 meV (corresponding to the built-in field of 6 kV/cm),
which was calculated taking the strain-induced bandgap
change into consideration. The Ing.53Ga0.4zA s

collector is 3000-A thick and is nor intentionally doped.
For reference, we also grew conventional uniform-base
HBTs (UB-HBTs) that had the same abrupr-emitter and
undoped-collector s truc ture s.

In order to investigate the band-edge offsets at the
InP[nxGa1-*As heterointerface, we measured the turn-
on voltages of 50 x 50 pm2 emitter-base diodes
fabricated on the same epi-wafers. As a result, there
was no appreciable change in the turn-on voltage
between the two devices. It is thus speculated that the
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band-gap difference dE6

Fig. l. Schematic band diagram of the GB-HBT.



Table I. Layer structure parameters of the GB-HBT.

Layer Material Doping Thick.
, (ctn-3) (A)

cap Ing.53Ga6.47As n= 3 x 1019 700
cap InP n= Z x l0l9 300
eminer InP n= 4 x 1017 700
spacer Ing.46Ga9.sqAs 50
base InaGal-1As p= 4 x l0l9 650
collector In6.53Gag.4zAs 3000
buffer Ino.slGao.+zAs n= 5 x l0l8 5000
graded base: x = 0.53 to 0.46 (dEC = 40 meV)

bandgap change due to the compositional grading is
mainly ascribed to the change in the conduction-band
offset with no significant change in the valence-band
offset.

The base contact resistivities measured by
transmission line methd were 0.45 pQcm2 for the GB-
HBT and 1.0 pftcm2 for the UB-HBT, while the base
sheet resistance was around 500 CUsq for both kinds of
structures. The lower contact resistivity of the GB-
HBT is presumably due to the higher Zn incorporation
in the vicinity of the emitter-base junction, which is
related to the larger GaAs fraction in the graded-base
structure. This low contact resistivity of the GB-HBT
is expected to provide 20Vo reduction in the base
resistance, compared to that of the UB-HBT.

3. Device Performance

Figure 2 shows typical common-emitter IC-VC7
characteristics for the fabricated transistors. The GB-
HBT exhibits a small-signal current gain of 50 at Ig = J
mA (current density of Jg = tZ5 kA/cm2), which is 1.5
times as large as that of the UB-HBT. At lower currenr-
injection levels, such gain enhancement due to the
graded layer is more significant, as shown in Fig. 3,
where the current gains are plotted as a function of
collector injection current. Consequently, the built-in
field in the base is effectiye for reducing the base transit
time as well as in suppressing the recombination
curents at the emitter-base junction and in the external
base region.

In Fig. 2, the GB-HBT shows small but noticeable
gain-reduction behavior at high-/6 and low-V6g bias
region while the outpur conducrance of the UB-HBT
gradually increases with collector bias voltage. This
difference suggests thar the strained In*Gal_xAs base
has nonradiative-recombination centers that are large
enough to degrade the minority-carrier lifetime with
device self-heating. It should be noted that the GB-
HBT provides higher current gains in spite of having
the larger recombination centers.
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Fig.2. Common-emitter lc-Vcp, characteristics for the GB-HBT
and UB-HBT. Curves are taken in steps of 20 pA of base currenL
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Fig. 3. Dependencies of small-signal current gun hpBon /g.

To obtain more detailed information on base
mn sport propertie s, on-wafer S-p arameter m easurem ent
was performed in the frequency range of 0.5-50 GHz
under various collector bias conditions. The S-
parameters of open and short pads on the same epi-
wafers were also measured to remove the parasitic
effects between the pad and the substrate. The f7 and
f*o, values were. respectively determined by
extrapolation of I lrzi2 anA Mason's unilateral power
gain U G to unity with a -20 dB/decade slope line.
Shown in Fig. 4 arefT andf^*plotted as a function of
collector current atVgBof 1.3 V. The GB-HBT obtains
a peakfT of 143 GHz at Ig = 8 mA (Jc = 200 kA/cm2),
while the peak f7 for the UB-HBT is LZl GHz. The
intrinsic delay times extracted using measured device
parameters were 0.71 ps for the GB-HBT and 0.93 ps
for the UB-HBT; thus, there is a0.ZZ ps reduction in
the base transit time in the proposed graded-base
structure. If we assume the collector transit time of 0.4
ps, which is a typical value for a 3000-A-thick InGaAs
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collectorcalculated using the Monte carlo simulationS),
average electron velocities in the base are 2.3 x 107
cm/s for the GB-HBT and 1.3 x 107 cm/s for the UB-
HBT.

In addition to reducing the base transit delay, the
graded-base structure is also found to suppress the base
widening effect under high-/6 and low-V6s bias
conditions. The built-in field in the base accelerares
low-speed energy-relaxed electrons into the collector,
which minimizes the accumulation of space charges near
the base-collector junction. Figure 5 shows .ouectot
bias dependencies of fr andfaaaat Ig = 6 mA (JC =
150 kA/c.2;. At Vcn < 1 V, the 

"utoif 
frequencies of

the GB-HBT rapidly increase with increasing collector
bias voltage. As a result, the GB-HBT provi des faals of
2O3 GHz andfTof 134 GHz even atVgs as low as I
V. Besides this impressive turn-on behavior, anfr,orof
240 GHz is successfully obtained at V66 = 2 V, as
shown in Fig. 6.

4. Conclusion

By comparing the DC and RF characteristics of
graded- and uniform-base HBTs, we have presented
clear evidence that the built-in field in the base markedly
improves the electron transport properties in the abrupt-
emifter InP/InGaAs HBTs. The proposed structure is
also effective for minimizing the base widening effect
under high-/g and low -V co bias conditionJ. The
suppressed base widening effect, combined with small
base resistance, permits an f^o* as high as 200 GHz
even atVg7of I V.
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