Formation and Characterization of Epitaxial Rutile Thin Films on Si Substrate

Myung Bok LEE, Masashi KAWASAKI, Mamoru YOSHIMOTO and Hideomi KOINUMA Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 227

Bum Ki MOON and Hiroshi ISHIWARA Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 227

Rutile phase TiO₂ films were epitaxially grown on Si(100) substrates by oxidizing epitaxial TiN films deposited by a pulsed laser deposition. The electrical resistivity and dielectric constant of TiO₂ film was $1.5 \times 10^{10} \Omega$ cm and 25, respectively. This film could be used as a buffer layer for the growth of epitaxial BaTiO₃ film on Si. The BaTiO₃ / TiO₂ double-layered capacitor on Si showed high dielectric constant and very low leakage current of 5×10^{-8} A/cm² at 10V.

1. Introduction

diode structure.

Rutile (TiO₂) has high dielectric constant (ε_{μ} 170,

 ε_{\perp} 89)¹⁾ together with high refractive index, high chemical stability and high laser damage threshold. This material can be a candidate for dielectric capacitor in future highly integrated dynamic random access memory (DRAM). Epitaxial rutile phase TiO₂ films were successfully deposited on such substrates as MgO²⁾ and Sapphire³⁾. However, TiO₂ films on Si substrate reported so far could not be grown in highly crystallized form⁴⁾. We describe a new and simple method to form TiO₂ epitaxial films on Si substrate. Rutile phase TiO₂ epitaxial films were obtained by the oxidation of epitaxial TiN films. Crystallinity and dielectric properties of thus prepared TiO₂ films and their successful application to a buffer layer for the growth of BaTiO₄ films are presented.

2. Experimental Procedure

Pulsed KrF eximer laser deposition (248nm, 20ns, 5Hz) was employed to deposit TiN films on Si. Epitaxial TiN films were grown on p-type Si (100) substrates ($\rho = 0.01 \sim 0.02 \ \Omega cm$) by ablating a hot pressed stoichiometric TiN target at 650°C in vacuum(~10⁻⁶ Torr). The TiN films were subsequently oxidized in 50 mTorr oxygen atmosphere. BaTiO₃ films were grown on thus prepared TiO₂ films by pulsed laser deposition at temperatures higher than 600°C and at oxygen pressures less than 1 mTorr. The crystallinity and in-plane orientation of these films were evaluated by X-ray diffractometry and X-ray pole figure, respectively. Al electrodes (~0.8 mm Φ) were deposited on these films through a shadow mask and Au was deposited on the backside of Si substrate by vacuum evaporation. The I-V and C-V characteristics were measured for the MIS

3. Results and Discussion

Figures 1(a) and (b) show the X-ray diffraction patterns of a TiN film (t = 90nm) grown epitaxially on Si (100) substrate and a TiO, film formed by oxidation of the TiN film for 30 min at 780°C in 50 mTorr O2 atmosphere, respectively. The rutile phase TiO₂ film was grown with (110) orientation. The FWHM values of ω -rocking curve for TiO₂ (110) and (220) peaks of this film were 2.48° and 2.28°, respectively, whereas FWHM for (200) peak of the original epitaxial TiN film was 1.74°. Figure 2 shows the X-ray pole figure of this TiO, film. The in-plane orientation of the TiO, film was revealed to be TiO, [001] // Si [011] and TiO, [001] // Si [011]. The (110) planes of TiO, rutile phase (a=4.593, c=2.959) oriented in two directions perpendicular to each other. As a comparison, we tried to grow TiO₂ film on Si substrates by directly ablating TiO, target. However, we could not grow an epitaxial film, and resulted in the similar results to the previous report4).

Figure 1(c) shows the X-ray diffraction pattern of BaTiO₃ film grown on thus prepared TiO₂ / Si at a temperature of 650°C in vacuum. The pattern represents the growth of an epitaxial double-layer (BaTiO₃ / TiO₂) film on Si. The values of FWHM for BaTiO₃ (100) and (200) peaks were about 5.5° and 5.7°, respectively. The in-plane orientation was revealed to be BaTiO₃ [010] // Si [010] by X-ray pole figure analysis. In this paper, we treat the crystal structure of BaTiO₃ film as a cubic perovskite, since the rather poor crystallinity prevents us from judging whether it is a-axis or c-axis oriented^{5.6}. Such epitaxial BaTiO₃ / TiO₂ double-layer could also be grown by one step process, i.e., by depositing BaTiO₃ film at 780°C in 50 mTorr oxygen pressure onto a TiN epitaxial film. In this case, it is presumed that oxygen diffuses into TiN layer through the BaTiO₃ film and the transformation of TiN into TiO₂ as well as the epitaxial BaTiO₃ film growth occur simultaneously. When we deposited BaTiO₃ film on TiN / Si at the same temperature (780°C) in vacuum, we obtained epitaxial trilayer structure of BaTiO₃ / TiO₂ / TiN / Si.

Figure 3 shows schematically the epitaxial relationship of BaTiO₃ / TiO₂ / Si layer. Here we note that the perovskite lattice of BaTiO₃ was aligned on Si in a cube-on-cube manner. Usually, the in-plane orientation of perovskite type dielectric oxide film deposited on Si substrate has a rotation of unit cell by 45°7). This is because the lattice constant of perovskite is about $a = 3.8 \sim 4.0$ Å and its diagonal length ($\sqrt{2}a$) agrees well with the lattice constant of Si (5.43Å). In figure 3, the lattice mismatches between BaTiO₃ and TiO, are 14% and -4.7%, and the values between TiO, and Si are -25.9% and -16.7%, for the two [110] directions perpendicular to each other. Epitaxial growth can occur in such systems with large lattice mismatch as ours as well as in low-lattice-mismatch ones. In former case, the domain epitaxial growth is presumed to occur to minimize the strain energy⁸. In our systems, 6 unit cells of BaTiO₃ match with 7 unit cells of TiO₂ in one direction (residual mismatch $\delta = 0.3\%$), and 21 unit cells of BaTiO, match with 20 unit cells of TiO, in the other direction ($\delta = 0.065\%$). On the other hand, 4 unit cells of TiO₂ match with 3 unit cells of Si ($\delta = 1.2\%$), and 6 unit cells of TiO_2 match with 5 unit cells of Si (δ = 0.04%).

Figure 4 shows the I-V(J-V) curve of a MIS (Al / TiO_2 / p-Si) diode. The leakage current through TiO_2 film was rather high value of about 10^{5} A/cm² at 2.5V. The electrical resistivity at 2.5V corresponded to $1.5 \times 10^{10} \Omega$ cm. A typical C-V characteristics is shown in Fig. 5. It shows hysteresis, suggesting the existence of interface or oxide trap sites. The dielectric constant at 1 MHz evaluated from the maximum capacitance value at the accumulation region was 25.

The I-V(J-V) characteristics of BaTiO₃ (400nm) / TiO₂ (90nm) / Si layer deposited by one step process represented excellent insulating properties up to 40V (0.8MV/cm). The leakage current was less than 5x10⁻⁸ A/cm² and electrical resistivity was about $10^{13}\Omega$ cm at 10V. A symmetrical I-V curve was obtained regardless of the polarity of the gate voltage. The dielectric constant of this double-layer dielectric film was evaluated to be about 100 at 1 MHz from the C-V measurement. The dielectric constant of BaTiO₃ film was calculated to be 370 by taking the two series capacitor layers into account. The capacitance of this double-layer should be further increased by reducing the TiO₂ film thichness.

In conclusion, the epitaxial TiO_2 film could be obtained on Si substrate by oxidation of epitaxial TiN film. This layer was shown to be useful not only as a capacitor but also as a buffer layer for the deposition of other dielectric or ferroelectric oxide films.

REFERENCES

- 1)G. V. Samsonov, Ed., *The Oxide Handbook* (IFI/Plenum, New York, 1973) 316.
- 2)Y. Kumashiro, Y. Kinoshita, Y. Takaoka and S. Murasawa, J. Cer. Soc. Jap. 101(5) (1993) 514.
- S. Chen, M. G. Mason, H. J. Gysling, G. R. Paz-Pujalt, T. N. Blanton, T. Castro, K. M. Chen, C. P. Fictorie, W. L. Gladfelter, A. Franciosi, P. I. Cohen and J. F. Evans, J. Vac. Sci. Technol. <u>A11</u>(5) (1993) 2419.
- 4)M. Y. Chen and P. Terrence, Mat. Res. Soc. Symp. Proc. <u>191</u> (1990) 43.
- 5)J. P. Gong, M. Kawasaki, K. Fujito, U. Tanaka, N. Ishizawa, M. Yoshimoto, H. Koinuma, M. Kumagai, K. Hirao and K. Horiguchi, Jpn. J. Appl. Phys. <u>32</u> (1993) L687.
- 6)K. Iijima, T. Terashima, K. Yamamoto, K. Hirata and Y. Bando, Appl. Phys. Lett. <u>56</u> (1990) 527.
- 7)H. Nagata, T. Tsukahara, S. Gonda, M. Yoshimoto and H. Koinuma, Jpn. J. Appl. Phys. <u>30</u> (1991) L1136.
- 8)T. Zheleva, K. Jagannadham and J. Narayan, J. Appl. Phys. 75 (1994) 860.

Fig. 1 X-ray diffraction patterns of (a) TiN film deposited on Si at 650°C, and (b) TiO₂ film formed by anneaning above TiN / Si for 30 min at 780°C in 50 mTorr O₂ atmosphere, and (c) BaTiO₃ film deposited on TiO₂ / Si layer at 650°C in vacuum.

Fig.2 X-ray pole figure of the TiO_2 film on Si (100) substrate. The poles are taken for TiO_2 {101} planes.

Fig. 4 I-V (J-V) curve for a MIS (Al / TiO₂ (120nm) / Si) diode.

