Invited

Device-Quality SiO_2/Si(100) and SiO_2/Si(111) Interfaces Formed by Plasma-Assisted Oxidation and Deposition Processes

Tetsuji Yasuda*, Y. Ma**, and G. Lucovsky
North Carolina State University, Department of Physics
Raleigh, NC 27695-8202, U.S.A.

We discuss a two-step plasma-assisted process that separates interface formation from film deposition. SiO_2/Si(100) interfaces with a trap density, D_{it}, in the low 10^{10} cm^{-2}, eV^{-1} range can be reproducibly formed by this 300°C process. We have applied the process to H-terminated Si(111) surfaces that were made atomically flat by an NH_4F treatment. It is demonstrated that the SiO_2/Si(111) interface prepared in this way has a D_{it} value as low as that for SiO_2/Si(100). We have also found that surface steps that are introduced by intentionally miscutting the (111) surfaces make only minor additional contributions to the D_{it} values.

1. Introduction

Formation of gate-quality SiO_2 at low temperatures is attracting increasing attention because of its potential applications[1-4], not only as a possible alternative to thermally-grown gate oxides, but also as one of the key materials components needed to realize complex and/or novel structures such as compound-semiconductor MOSFET's and three-dimensional devices. The performance and reliability of TFT's also rely on the integrity of vapor-deposited insulators, and their interfaces with poly- or a-Si. Having these potential future applications in mind, we have been studying interfaces between SiO_2 and crystalline Si, as formed by low-temperature plasma-assisted processing. Understanding the physics and chemistry of interface formation on crystalline Si surfaces is a milestone toward the success of other applications requiring low-temperature oxides.

This paper discusses device-quality SiO_2/Si(100) and SiO_2/Si(111) interfaces formed by plasma-assisted oxidation and deposition processes at 300°C[2,5]. We have shown that a two-step process that separates interface formation from film deposition produces SiO_2/Si(100) interfaces with a trap density, D_{it}, in the low 10^{10} cm^{-2}, eV^{-1} range. We have applied this two-step process to H-terminated atomically-flat Si(111) surfaces prepared by an NH_4F treatment. These surfaces were characterized by techniques such as AES, LEED, SIMS and spectroscopic ellipsometry (SE)[5,6]. It was shown that SiO_2/Si(111) interfaces prepared in this way had D_{it} values as low as that for SiO_2/Si(100). This observation requires a reexamining of the conventional belief that Si(111) surfaces cannot form a device-quality interface with SiO_2. We also found that surface step densities on vicinal Si(111), of the order of 10^6 cm^{-1}, make only minor additional contributions to these relatively low values of D_{it}.

2. Experimental

Experimental details have been described in previous publications[2,5]. Lightly-doped p-type Si wafers were first cleaned by the standard RCA method. For Si(100), the final sacrificial chemical oxide was removed by etching in 1.6 % HF, whereas Si(111) surfaces were treated in one of the three different solutions: 1.6 % HF, 1:6 BHF, and 40 % NH_4F. It is widely confirmed that the treatment in NH_4F produces an atomically-flat Si(111) surface while the HF treatment leaves a relatively rough surface[7]. After a short DI water rinse, the Si wafers were loaded into a multichamber remote plasma-enhanced CVD system where the two-step, 300°C process noted above was carried out. This process consisted of (i) an exposure to atomic-O generated by a remote O_2/He plasma, and (ii) remote plasma CVD to complete formation of 10 to 20 nm SiO_2. The first step removed organic contamination at the Si surface, and at the same time formed a superficial oxide layer ~0.6 nm thick. After sputtering an Al electrode, the MOS structure was annealed in N_2 at 400°C for 30 minutes, and then was evaluated by the conventional high-frequency/quasi-static C-V method.

3. SiO_2/Si(100) Interfaces

The effectiveness of the two-step processing in achieving low D_{it} values on Si(100) is illustrated in Fig. 1, where D_{it} at midgap is plotted as a function of time of the atomic-O exposure. Without any exposure, i.e. t = 0, D_{it} shows considerable scatter between low 10^{10} and 10^{11} cm^{-2}, eV^{-1} values. This is presumably due in part...
to C residues on the Si surface and/or to excessive N incorporation at the interface[2]. After a 15 s exposure to atomic-O, D_H was reduced to the low 10^{10} \text{cm}^{-2}\cdot\text{eV}^{-1} range, essentially the same as what is typically observed for thermal oxide interfaces. The flat-band voltage was -0.60 V, which was in the range of what is estimated from the work-function difference between Al and the p-Si wafers. On-line AES of this pre-oxidized surface prior to SiO_2 deposition showed that there was no detectable C, and that the estimated oxide thickness was ~0.6 nm. SIMS measurements showed that the C-atom concentration at the SiO_2/Si interface was ~2x10^{12} \text{cm}^{-2}, and the N-atom concentration was ~1.5x10^{14} \text{cm}^{-2}. No crystalline features were evident in the LEED measurement.

The D_H was almost unchanged upon longer exposures to atomic-O. This is in contrast to the case of atomic-H exposures, which are also shown in Fig. 1. D_H increases in proportion to time of the pre-deposition exposure to atomic-H, due to a roughening of the Si(100) surface.

MOSFET devices that incorporate the SiO_2/Si(100) interfaces prepared by this process were fabricated[4], and display peak channel mobilities comparable to those of control devices incorporating a thermally-grown gate oxide.

![Fig. 1 D_H at midgap as a function of processing time for pre-deposition oxidation (open circles) and H_2 plasma cleaning (solid circles). The Si surface orientation was (100).](image)

4. SiO_2/Si(111) Interfaces

The two-step process consumes only a superficial layer of the Si wafer. It is qualitatively different from thermal oxidation, in which the Si substrate is consumed to create the oxide layer so that the SiO_2/Si interface is continuously regenerated during the process. Therefore, the two-step process provides for more control of the structure and bonding chemistry at the SiO_2/Si interface.

We have applied the two-step process to Si(111) surfaces where the structural integrity of the initial H-terminated surfaces can be readily controlled by varying the nature of HF/NH_4F treatments used to remove wet chemical sacrificial oxides[7]. Prior to electrical evaluation of the MOS structures, we discuss the properties of Si(111) surfaces that were subjected to a treatment in three different HF/NH_4F solutions. Figure 2 shows the imaginary part, e_2, of the pseudo-dielectric function of Si(111), <<>, as determined by spectroscopic ellipsometry[6]. In SE, there is a basic rule that the greater the integrity of a semiconductor surface, the higher the e_2 value for so-called E_2 transition peak (at 4.25 eV in Si). According to this rule, the NH_4F-treated surface has the highest integrity (i.e., it is the smoothest and the purest chemically) while the HF-treated one has the poorest. These observations are consistent with the IR, STM, AES, and LEED observations in the literature[5,7].

![Fig. 2 Imaginary part of pseudo-dielectric function of Si(111) as determined by SE. The surface was treated in the three different solutions as indicated in the figure. The insert is a magnification of the values of e_2 for the E_2 feature.](image)

Figure 3 compares the D_H spectra of MOS capacitors on Si(111) that were subjected to the three different pre-deposition treatments. The lowest D_H was achieved with the NH_4F pre-deposition treatment, while the sample treated in HF showed the highest D_H. The overall trends in the figure are consistent with the changes in microstructure and chemical purity of the initial Si surface as reflected in the e_2 spectra of Fig. 2. The D_H value at the midgap, ~3x10^{10} \text{cm}^{-2}\cdot\text{eV}^{-1}, is significantly lower than those reported for thermally-grown SiO_2/Si(111), typically high 10^{10} to 10^{11} \text{cm}^{-2}\cdot\text{eV}^{-1}[8], and is about as low as those obtained by F passivation of thermally grown SiO_2/Si(111)[9]. The characteristic P_0-like feature at 0.3-0.4 eV could be further reduced by annealing in H_2.

Since structural controllability of Si(111) surfaces
and SiO₂/Si(111) interfaces was demonstrated in Figs. 2 and 3. We are now able to address some issues relating to the origin of D_{it}. One of these is the effect of surface steps. The step density on Si(111) can be controlled by varying the miscut angle of the crystal while keeping the terrace atomically smooth by the NH₄F treatment. Figure 4 shows the mid-gap D_{it} plotted as a function of the miscut angle. The local atomic structures at the steps are markedly different for the two miscut directions, [112] and [112] studied[10]. However, D_{it} is not strongly dependent on either the miscut direction, or the miscut angle. It is therefore concluded that surface steps are at most a minor contributor to D_{it} on Si(111) as long as their density is of the order of 10^6 cm⁻¹ or less.

T.Y. acknowledges Prof. D.E. Aspnes at NCSU for his guidance in SE measurements. The authors would like to thank David R. Lee for his assistance in C-V measurements and SIMS studies. This work was supported by the ONR, the NSF, the NSF Engineering Center for Advanced Electronic Materials Processing, and SEMATECH Center of Excellence at NCSU.

* Present address: Joint Research Center for Atom Technology (JRCAT), National Institute for Advance Interdisciplinary Research, I-1-4 Higashi, Tsukuba, Ibaraki 305, Japan
** Present address: AT&T Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

References