Extended Abstracts of the 1994 International Conference on Solid State Devices and Materials, Yokohama, 1994, pp. 802-804

PC-1-7

Electron Transport Modeling of Electron Waveguides
in Nonlinear Transport Regime

H. Tsuchiya and T. Miyoshi

Department of Electrical and Electronics Engineering, Kobe University

Rokko-dai, Nada-ku, Kobe 657, Japan

The modeling of nonlinear quantum transport in electron waveguides is studied based
on the Wigner function model. In particular, the phase-randomizing scatterings in con-
tacts are carefully modeled in the quantum Liouville equation for the Wigner function by
using the relaxation time approximation. Space-charge effects are also included by solving
the Liouville equation and the Poisson’s equation self-consistently. The current-voltage
characteristics of electron waveguide is simulated at 7 =0K. In the nonlinear transport
regime, the space-charge significantly affects the current-voltage characteristics of the elec-
tron waveguide. Further, the possibility of the transistor operation of the electron waveguide

is discussed at 7' = 0K.

1. INTRODUCTION

Recent advances in crystal growth and microfabri-
cation technologies have allowed us to explore a new
field of semiconductor device research. Instead of con-
ventional devices described by the classical model, a
variety of novel device concepts have been proposed
based on the quantum mechanical features of carri-
ers. As a preliminary modeling of quantum devices,
the so-called transmission coefficient method has of-
ten been used because of its simplicity[1,2]. One
major problem of this method is the fact that we
have to assume the statistical distribution of carri-
ers in advance. Thus, this model can be applied
only to systems close to thermal equilibrium. On
the other hand, the Wigner function model has been
applied to the analysis of the transport problems in-
cluding scattering effects and electron-electron inter-
action, and the dynamic properties[3-5]. The anal-
ogy between the two models is theoretically studied
in the linear transport regime when the applied volt-
age is very small[6]. In this paper, the modeling of
nonlinear quantum transport in quantum devices is
studied based on the Wigner function model. In par-
ticular, the phase-randomizing scatterings in contacts
are carefully modeled in the Liouville equation for the
Wigner function by using the relaxation time approx-
imation. Space-charge effects are also included by
solving the Liouville equation for the Wigner func-
tion and the Poisson’s equation self-consistently.

2.WIGNER FUNCTION MODEL FOR ONE-
DIMENSIONAL ELECTRON WAVEGUIDE

A. Quantum Liouville equation for Wigner function

As a simulation model, the one-dimensional elec-
tron waveguide with reservoirs as shown in Fig. 1 is
considered, where the cross-sectional dimensions are
L, and L,. In the depth(z) direction, only the funda-
mental mode is considered. For the infinite-confining
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Fig1. Simulation model of one-dimensional
electron waveguide with reservoirs.

potential in the transverse y and z directions, the
following one-dimensional Liouville equation for the
Wigner function is solved in the electron waveguide[3].
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where f(z, k,) is the Wigner function integrated over
the transverse momenta and coordinates. The scat-
tering term (9f/dt), is added phenomenologically to
describe the phase-randomizing effects in reservoirs
and the resistive effects in the waveguide.

The Liouville equation (1) is solved numerically
based on the boundary conditions and the finite-
difference method as discussed in Ref. 3.

B. Modeling of reservoirs

Electron waves entering into a reservoir from a
waveguide are phase-randomized in short time to
reach the thermal equilibrium states. To describe
such phase-randomizing scatterings in a reservoir phe-
nomenologically, the following relaxation time ap-
proximation is introduced in our Wigner function




model. Scattering process in reservoirs is schemati-

cally represented in Fig. 1. For simplicity, only the

icattering process in the left reservoir is explained
ere.

When we assume that all left-going electron waves
injected into the left reservoir from the device are ab-
sorbed without any reflection, the transitions from the
left-going wave(k, < 0) to the right-going wave(k, >
0) can be neglected, and thus only the reverse cou-
pling from the right-going wave to the left-going wave
is considered in the left reservoir. The scattering term
representing the above processes is written as

- feq(, k)
| dkL o, 2)

xj:o d!c;f(a:,k;)] k>0 (3)

__1._ f(ﬁ, kz) -

af _
(E)c T

1 feq(z, k)
:kx - 53] 2
2, |F@ e) 7 ke fuolz, K

" f ‘: dk. f(z,k;)]

Jkz <0 (4)

where 7, and f,, are the relaxation time and the distri-
bution function in thermal equilibrium, respectively.
Here, note that the lower limits of integration are dif-
ferent for k., > 0 and k; < 0 in the above represen-
tations. In the right reservoir, the similar represen-
tations of the scattering term are obtained. In this
paper, we will study the low temperature properties
of the electron waveguide, and thus any scatterings in
the waveguide region are ignored.

C. Space-charge effects
In the linear regime, the space-charge effects are
not important because a small bias voltage induces
a small charge imbalance in the device. On the
other hand, in the nonlinear regime, a large amount
of charge accumulation and depletion are expected
to deform the potential profile significantly. Thus,
to include the space-charge effects in the analysis of
the exact nonlinear quantum transport of electron
waveguide, the following Poisson’s equation should be
solved simultaneously with the Liouville equation for
the Wigner function.
%y 8% 9% e
amg + ayg + azg = _E[P($5 yl Z) - n(z,y, Z)] (5)
where T' is the doping density. In this paper, we sim-
plify the equation(5) to a quasi-one-dimensional prob-
lem by using the solutions when the bias voltage is
removed, (2, y,2) and no(z,y,z). When the both
changes of ¢ and n in the y and z directions are as-
sumed to be negligibly small even after the bias volt-
age is applied, the quasi-one-dimensional Poisson’s
equation with respect to z-direction is derived as
¢ e
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where fip and 7 are the average electron densities per
unit volume represented by
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The Liouville equation(1) and the Poisson’s equa-
tion(6) are mutually related through the one-
dimensional electron density

o dk,
n(z) f_w o (@ k)
and the potential energy v(z) = —ey(z).

3. NONLINEAR [ -V CHARACTERISTICS
OF ELECTRON WAVEGUIDES

First, the current-voltage characteristics of an one-
dimensional electron waveguide are calculated at T' =
0K. Since the waveguide region is assumed to be per-
fectly ballistic, voltage drops are expected to exist
only near the both ends of the waveguide due to the
so-called spreading resistance. Thus, as an initial po-
tential distribution in the iterative calculation, a step
potential drop as shown in Fig. 2 is employed. The
waveguide structure is chosen so that only one width
mode can propagate in the wire. Fig. 3 shows the
calculated I — V curves at T' = 0K, where the phase-
breaking time in the reservoirs is given as 10fs. The
dashed line is the result neglecting the space-charge
effects, and the dotted line indicates the relation of
the perfect quantization of conductance. First, the
I — V curves are found to deviate from the dotted
line as the bias voltage increases. Such a nonlinear
behavior has been reported experimentally[7]. In ad-
dition, when the bias voltage is larger than 5mV, the
solid curve diverges from the dashed one. This result
means that the space-charge effects play an important
role, particularly, in the nonlinear transport regime.
Next, Fig. 4 and 5 show the electron density and the
potential distributions for various bias voltages, re-
spectively. It is found from Fig. 4 that the electrons
are accumulated in the left reservoir and depleted in
the right reservoir. This is due to the phase-breaking
scatterings and the acceleration of electron waves by
the electric field induced in the reservoirs as found in
Fig. 5. Further, it is first found from Fig. 5 that as
the bias voltage increases, the abrupt voltage drops
at the both ends of the waveguide disappear due to
such a space-charge effect. As a result, the electron
density oscillation inside the waveguide, which has
been obtained in the linear transport regime[6], dis-
appears in the nonlinear transport regime. Further,
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Fig. 2 Initial potential distribution in the
iterative calculation at T=0K.



there is no saturation in current in the self-consistent
solution. This is due to the fact that the electrons
are accelerated in the cathode by the electric field in-
duced by the space-charge effect. In addition, it is
found from further investigation of the nonlinear be-
haviors by varying relaxation times that the J — V
curves similar to Fig. 3 are obtained although more
electrons are accumulated in the left reservoir and de-
pleted in the right reservoir for the shorter relaxation
time.
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Fig. 3 Calculated current-voltage characteristics
of electron waveguide at T=0K.
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Fig. 4 Carrier density distributions calculated for

various bias voltages.
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Fig. 5 Potential distributions calculated for
various bias voltages.
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Finally, we will present the transistor operation of
the electron waveguide. Fig. 6 shows the I —V curves
at 7' = 0K for various waveguide widths. The current
1s found to increase with L, since the width mode
in the waveguide increases with the waveguide width.
Such a FET-like transistor operation will be expected
in the split-gate structure, because the waveguide
width can be varied by the external gate voltage.
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Fig. 6 Calculated current-voltage characteristics
at T=0K for various waveguide widths.

40

4. CONCLUSION

The modeling of nonlinear quantum transport in
quantum devices is studied based on the Wigner func-
tion model. In particular, the phase-randomizing
scatterings in contacts are carefully modeled in the
Liouville equation for the Wigner function by us-
ing the relaxation time approximation. In addition,
space-charge effects are also included by solving the
Liouville equation for the Wigner function and the
Poisson’s equation self-consistently. As a simulation
model, one-dimensional electron waveguide is consid-
ered. The current-voltage characteristics of electron
waveguide is simulated at T = 0K. As a result, it
is found that in the nonlinear transport regime, the
space-charge significantly affects the current-voltage
characteristics of the electron waveguide. Further,
the possibility of the transistor operation of the elec-
tron waveguide is demonstrated at T = 0K. In our
Wigner function model, the high temperature per-
formance of the electron waveguide can be obtained
if the LO phonon scattering processes are included
properly through the relaxation time approximation.
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