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Electron Transport Modeling of Electron Waveguides
in Nonlinear Transport Regime
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Tfe ggdeling- of nonlinear _quantum transport in electron waveguides is studied based
on the Wigner function model.- In particula,r, the_ phase-randomiz-ing scatterings in con-
tacts are carefully modeled in the quantum Liouvilli equation for thJWigner fu-nction by
}.ti"g the r.elaxation time fpproximation. Space-charge efects are also included by solving
the Liouville equation and the Poisson's equation s-elf-consistently. The curreni-voltugE
characteristics of electron waveguide is_simul_ated at T -0K. In ihe nonlinear transport
regime, the space-charge significintly affects the current-voltage characteristics of the .1..-
tron waveguide. Futllt-.t, the possibility of the transistor operation of the electron waveguide
is discussed at T - 0K.

1. INTRODUCTION
Recent advances in crystal growth and microfabri-

cation technologies have allowed us to explore a new
field of semiconductor device research. Insiead of con-
ventional devices_described by the classical model, a
va.riety of novel device concepts have been proposed
based on the quantum mechanical'features-of carri-
ers. As a_preliminary modeling of quantum devices,
the so-called transmission coeficient method has of-
ten been used because of its simplicitvfl,2l. One
major problem of this method is ihe futi ihat *e
have to assume the statistical distributioh of carri-
ers in advance. thus, this model can be applied
o-nly t_o systems close to thermal equilibrium. 

- 
On

the other hand, the Wigner function model has been
app-lied to the analysis of the transport problems in-
cluding scattering effects and electron-electron inter-
actio-n, and the dynamic properties[B-b]. The anal-
9BI- be_tween the two models is theoietitally studied
in the linear transp_ort regime when the applied volt-
age.is very smil[6]. In ihis paper, the rir'odeling of
nonlinea,r quantum transport in quantum device-s is
studied based on the Wigner function model. In par-
ticular, !\q ph*.-randomizing scatterings in contlcts
a_r_e ca,ref-ully modeled in the Liouville equation for the
Wigner function by using the relaxation time approx-
imation. - Sp_ace-clarge effects are also included by
solving the Liouville lquation for the Wigner funi-
tion and the Poisson's equation self-consistlntly.

2.WIGNER FUNCTION MODEL FOR ONE-
DIMENSIONAL ELECTRON WAVEGUID E

A. Quantum Liouville equation for Wigner function
As a simulation model, the one-dimensional elec-

tron-wave_guide with reservoirs as shown in Fig. 1 is
considered, where the cross-sectional dimensions are
.[, an{ L". In the depth(e) direction, only the funda-
mental mode is considered. For the infinite-confining
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Reservoir Elecnon Waveguide Reservoir
Fig1. Simulation model of one-dimensional

electron waveguide with reservoirs.

potential in the tlansverse y and a directions, the
following one-dimensional Liouville equation foi the
Wigner function is solved in the electron waveguide[B].

# : -*H - I l:#"o,k, - k,.)r(r,k.)

where f (*,k") is the Wigner function integrated over
the transverse momenta and coordinates. The scat-
tering term (Af /0t)c isadded phenomenologically to
describe the phase-randomizing effects in reservoirs
and the resistive effects in the *aveguide.

The Liouville equation (1) is so-lved numerically
based on the boundary conditions and the finite-
difference method as discussed in Ref. 3.

B. Modeling of reservoirs
Electron waves entering into a reservoir from a

waveguide are phase-randomized in short time to
reach the thermal equilibrium states. To describe
such phase-randomizing s_catterings in a reservoir phe-
nomenologically, the follorving rllaxation time ap-
proximation is introduced in our Wigner function
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model. Scattering process in reservoirs is schemati-
cally represented 

-in Fig. 1. For simplicity, only the
scattering process in the left reservoir is explained
here.

When we assume that all left-going electron waves
injected into the left reservoir from the device are ab-
sorbed without any reflection, the transitions from the
left-going wave(ft, < 0) to the right-going wave(&" >
0) can be neglected, and thus only tlre reverse cou-
pling ftom the right-going \4'ave to the left-going wave
is considered in the left reservoir. The scattering term
representing the above processes is written as
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where r, and f eq a;re the relaxation time and the distri-
bution functibn' in thermal equilibrium, respectively.
Here, note that the lower limits of integration are dif-
ferent for /c, ) 0 and Ic, 1 0 in the above represen-
tations. In the right reservoir, the similar rePresen-
tations of the scattering term a,re obtained. In this
paper, we will study the low temperature properties
of the electron waveguide, and thus any scatterings in
the waveguide region are ignored.

C. Space-charge efiects
ln ttre tineir regime, the space-charge effects are
not important because a small bias voltage induces
a small charge imbalance in the device. On the
other hand, in the nonlinear regime, a large amount
of charge accumulation and depletion a,re expected
to deform the potential profile significantly. . Thus,
to include the space-charge effects in the analysis of
the exact nonlinear quantum transport of electron
waveguide, the following Poisson's equation should be
solved simultaneously with the Liouville equation for
the Wigner function.

0'rl, , A"r/t , A"! _ €t''t^
ffi + W + # =-i[r{', Y,z) - n(n,Y,z)] (5)

where f is the doping density. In this paper, we sim-
plify the equation(S) to a quasi-one-dimensional prob-
Iem by using the solutions when the bias voltage is
removed, rlr[r,y,z) and no(n,a,z). When the 6oth
changes of r/ and rz in the y and z directions are as-
sume-d to be negligibly small even after the bias volt-
age is applied, the quasi-one-dimensional Poisson's
equation with respect to r-direction is derived as

d'zl\ et-, \#: -ilno(*) - n(')l (6)

where Ds and fl are the average electron densities per
unit volume represented by

tf+ft,,^(*\n(r)- -'- 1 - L d,zd,yn(u,a,z):# (7)\ / LoLrJ-+J-+ v \ LuL,

1, r? r? , , , \ ne(r)
ao(r) : fr l|y J_ldzdyns(n,u, 

z) : ffi (8)

The Liouville equation(1) and the Poisson's equa-
tion(6) are mutually related through the one-
dimensional electron density

n(r) - l**,(*,k,)
and the potential energy u(n) - -er!@).
3. NONTINEAR I _V CHARACTERISTICS
OF ELECTRON WAVEGUIDES

First, the c-urrent-voltage characteristics of an one-
dimensional electron waveguide are calculated at ? :
0K. Since the waveguide region is assumed to be per-
fectly ballistic, voltage drops are expected to exist
only- near the both ends of the waveguide due to the
so-called spreading resistance. Thus, as an initial po-
tential distribution in the iterative calculation, a step
potential drop as shown in Fig. 2 is employed. The
waveguide structure is chosen so that only one width
mode can propagate in the wire. FiS. 3 shows the
calculated / - V curves at T - 0K, where the phase-
breaking time in the reservoirs is given as 10fs. The
dashed line is the result neglecting the space-charge
effects, and the dotted line indicates the relation of
the perfect quantization of conductance. First, the
I - V curvei are found to deviate from the dotted
Iine as the bias voltage increases. Such a nonlinear
behavior has been repbrted experimentallyft]. In ad-
dition, when the bias voltage is larger than 5mV, the
solid curve diverges from the dashed one. This result
means that the space-charge effects play an important
role, particularly, in the nonlinear transport regime.
Next,-Fig. 4 and 5 show the electron density and the
potential distributions for various bias voltages, re-
spectively. It is found from Fig. 4 that the electrons
are accumulated in the left reservoir and depleted in
the right reservoir. This is due to the phase-breakilg
scatteiings and the acceleration of electron waves_ by
the electiic field induced in the reservoirs as found in
FiS. 5. Further, it is first found {rom Fig. 5 that as
the bias voltage increases, the abrupt voltage drops
at the both ends of the waveguide disappear due to
such a space-charge effect. As a result, the electron
density oscillation inside the waveguide, which has
been obtained in the linear transpoit regime[6], dis-
appears in the nonlinear transport regime. Further,
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there is no saturation in current in the self-consistent
solution. This is due to the fact that the electrons
are accelerated in the cathode by the electric field in-
duced Fy the space-charge effeit. In addition, it is
found from further investigation of the nonlinear be-
haviors by varying relaxatlon times that the I - V
curves similar to Fig. 3 are obtained although more
electrons are accumulated in the left reservoir-and de-
pleted in the right reservoir for the shorter relaxation
time.

| _ - ' ' | . ' l al 
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-T=0K ,,'
l-y=Sonm(single mode) .," r r =1ofs
Lz=30nm ,,'

l=(ze2ln)V,r' -/.-/
a." -/

,r' z----->2'7z-

Self-consistent solution
Without Poisson's Eq.

-L,... r,.

Fig.
Voltage (mV)

3 Calcu lated cu rrent-vo ltage cha racte ristics
of electron waveguide aiT=OK.

- Finally, we will present the transistor operation of
the electron waveguide. Fig. 6 shows the 1-- Z curves
at T :0K for various waveguide widths. The current
is found to increase with Zn since the width mode
1n tlre L?ylgglde increases with the waveguide width.
Such a FET-like transistor operation will-be expected
in -t{re split-gate structure, 

- 
because the waveguide

width can be varied by the external gate voltage.

Voltage (mV)

Fig. 6 Calculated current-voltage characteristics
at T=0K for various waveguide widths.

4, CONCLUSION
The modeling of nonlinear quantum transport in

quantum devices is studied based on the Wiener func-
tion model. In particular, the phase-raridomizing
scatterings in contacts are carefully modeled in the
Liouville equation for the Wignei function by us-
ing the- relaxation time approximation. In addition,
space-.charge effects are also included by solving the
Liouville equation for the Wigner function and' the
Pois_son's equation self-consistently. As a simulation
model,_gne-dimensional electron waveguide is consid-
ered. The current-voltage characteristics of electron
waveguide is simulated 1t f _ 0K. As a result, it
is found that in the nonlinear transport regime, ihe
space-charge significantly affects the curretrl-voitag"
characteristics of the electron waveguide. Furthe"r,
the possibility of the transistor operition of the elec-
tron waveguide is demonstrated at T : 0K. In our
Wigner fun-ction model, the high temperature per-
formance of the electron waneguid. can be obtained
if the LO phonon scattering processes are included
properly through the relaxat-ion time approximation.
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