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Hardware-Oriented Learning Algorithm Implemented on Silicon
Using Neuron MOS Technology

Hiroshi ISHII, Tadashi SHIBATA, and Tadahiro OHMI

Department of Elcctronic Engineering, Tohoku University
Aza-Aoba, Aramaki, Aoba-ku, Sendai 980 JAPAN

Wc have developed a basic hardware organization for neural networks using "brain-
cell-likc" transistor called Neuron MOSFET (vMOS) as a key element and a newly developed
EEPROM synapse cells. [n order to provide a sclf-learning capability to the neural network
hardware, a new hardware-oriented learning algorithm called Hardware Backpropagation
(HBP) has been dcveloped by simplifying the original Backpropagation algorithm aiming at
facilitating its on-chip circuitry implementation. The self-learning performance of vMOS
neural networks has been verified by a learning simulator which has been developed for
optimizing the pertinent circuit parameters.

INTRODUCTION
Neural networks are now focused as a new

paradigm of information processing because of its
self-adapting capability in solving problems. [n order
to accommodate a neural network hardware to existing
learning algorithms, the chip needs an off-chip
supen'isor computer, or otherwise oonsumes a large
chip area for learning control circuitry. For the purpose
of high-density integration of a neural chip having an
on-chip self-learning capability, it is critiCally
important to develop a new learning algorithm
specifically designed to facilitate on-chip circuitry
implementation. For this purpose, we have developed
a new hardware-oriented learning algorithm calted
Hardu,are Backpropagation (HBp'), which is a
simplified and modificd version of the original
Backpropagation (BP) algorithm [l]. One of the most
important features in HBP is the introduction of the
concept of "Irarning Enhancement": the learning of a
network (weight modification) is forced to continue
even if it gives a right answer until the NET (weighted
sum of inputs for a neuron) is wcll shifted away from
the threshold point. This is important to guarantee a
long-term stability of the learned state of a neural
network. The purpose of this paper is to present the
HBP algorithm and its circuit implementation using
vMOS technology.

NEURON CELL AND SYNAPSE CELL
A vMOS has a floating gate and multiple input

gatcs which are capacitively coupled to the floating
gate [2]. The linear sum operation of all input signals
is carried out via capacitive coupling at the floating
eate, and on and off states of the transistor i;
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controlled by the potential of the floating gate. A
neuron cell configuration composed of a

complementary vMOS inverter and an ordinary
inverter, is shown in Fig. L. The neuron fires when the
potential of the floating gate (dendrite) exceeds the
inverting threshold of the vMOS inverter.
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of vMOS neuron cell.

The synapse circuit shown in Fig. 2 is providcd
to each synaptic connection to make the connection
strength adjustable [3,1]. Thc synapse cell stores
analog weight data as charges on the floating gate and
transfers the weight value to the input gate of a neuron
nondestructively by the action of N- and P-vMOS
source followers. The source followers are mcrged into
CMOS inverters to cut off the DC cunent paths, thus
realizing low-power fcature. The changc in the
synaptic weight can be accomplished by selccting the
high-voltage program lines, V* and V", in a similar
manner to the programming of dual-control-gate
EEPROM cell [5]. Namcly, only at cells whcrc both
V* and V" are high, the wcight modification (charge
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injection) occurs. Alt synapse ouput voltages

transfened to the neuron floating gate (dendrite)
identical coupling capacitances.

A photomicrograph of an experimental vMOS
neural network chip is shown in Fig. 4, where the

HBP algorithm is implemented in the learning

controllers using vMOS circuit tcchnology.The circuit

diagram of the learning controller for ouput neurons

is given in Fig. 5. Thc HBP-parameter gencrator is

utilized to generate the window function in Fig. 3

where the parameter e is determined by signals V" and

Vr. Similar circuits are also used to define marginal

regions (cr). The measured output characteristics of the

circuit is shown in Fig. 6.

are

via

Fig. 2. Circuit diagram of seven transistor synapse cell'

HARDWARE LEARNING
Hardware Backpropagation (HBP) is a

simplified and modified version of the original
Backpropagation (BP) algorithm [U as illustrated in
Fig. 3. The sigmoidal function are replaced by a step

function so that it matches to the output characteristics
of the vMOS neuron cell. Its derirative in original BP
are replaced by a window function, which are most
easily realized by vMOS circuitry. Here NET=-L,0 or
1. on the abscissa corresponds to the neuron floating-

gatc potential of 0, Yo& or Voo on the hardware. 0
represents the "error parameter" to backpropagate for
wcight modification. a specifies the marginal region
within which thc weight modification is continued for
"leaming enhancement." This is important to guarantee
a long-term stability of the lcarned state of the chip
against disturbances such as the charge loss in
EEPROM synapse memories or the noise in threshold
opcration of neuron cells.
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Fig. 4. Experimental vMOS neural network having on-chip
learning circuitry, including three input units, two hidden-

layer neurons, two output neurons and 20 synapses.

HBP-PARAMETERGENERATOF DELT* SELI

Fig. 5. Circuit cliagram of the leaming controller for output

neurons.

OPTIMIZATION OF HBP PARAMETERS
The optimization of the parameters o and e

was carried out by computer simulation employing

three-input XOR learning as a test problem. Irarning
was performed for 50 different random weight patterns

at the initial stage and the presentation was repeated

up to 40,000 times. In Figs. 7, 8, and 9, the

convergence probability for 50 initial conditions is

shown as a function of the learning rate.

Fig. 7 demonstrates the optimization of c for
hidden layer neurons. In the marginal region specified
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Fig.6. Measured output charactcristics of vMOS window-
function generator.

by a, the network is forced to continue learning even
after it correctly learns the problem. Therefore the
larger the cr value, the performance would be expected
to degrade. However, it is quite interesting to note that
the performance is enhanced with the introduction of
a. Such forced learning would help the network to
escape from local minima. For this reason cr for
hidden is set at 0.05.

Further enhancement in the learning
performance was canied out by optimizing the window
function (e) as shown in Fig. 8. The largest
performance is obtained for stair-case variation of e,

which is very easily performed on hardware by
changing VH and VL as shown in Fig. 6. The
comparison of the learning performance for HBP and
BP t6l is given in Fig. 9, demonstrating superior
performances of HBP over original BP.

The ability to solve new problems not shown
during the learning phase (generalization capability)
can not been verified by such a simple problem as

XOR lcarning. The generalization capability of vMOS
neural network has been verified for mirror symmetry
problcm learning and is described in Ref. [7].
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Fig. 8. I-earning performance enhancement by stair-case
variations in the learning region width e. The stair-case
steps are illustrated in the figure.
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Fig. 7. Performance of threc-input XOR lcarning for
various values of marginal region wiclth a for hicldcn,

where cr for output is set at 0.03.

LEARNING RATE

Fig.9. Lrarning performance comparison between original
BP and HBP. Data of BP were taken from Ref. [6].

CONCLUSION
A new hardware-oriented learning algorithm

called Hardware Backpropagation (HBP) has been
developed for vMOS neural network. By optimizing
the pertinent parameters for circuit design using
learning simulator, HBP has shown superior learning
performance to original BP. We have introduced a new
conccpt of "learning enhancement" for the first time to
guarantee the long-term stability of the lcarncd state
of a chip, which has also drastically enhanced the
learning performance.
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