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Superior Generalization Capabilities of Neuron-MOS Neural Networks
in Mirror-Symmetry Problem Learning
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We have studied the self-learning perforrnance of Neuron-MOS (UMOS) neural

networks in solving mirror symmetry problems using computer simulation. Despite the

inherent restrictions imposed on Hardware-Backpropagation (HBP) lcarning algorithm
directly implernented on uMOS neural networks, a superior generalization capability (the

ability to solve new problems not shown during the learning phase) has been demonstrated

for HBP by optimwingthe circuit parameters.
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mirror symmetry problem requires detecting which one

of three possible axes of symmetry is present in 4x4
pixel (binary) input(see Fig 1). The network architecture
used for simulatioh is depicted in Fig. 2, where each

output neuron was trained to get fired corresponding to
respective axis. If more than two symmetry axis were
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Fig.1 Sampte of minor symlnetry problems. Network is
re{uested tb answer for tlie direction of the symmetry axis.

I INTRODUCTION

Hardware implementation of self-learning neural
networks on silicon is now very actively pursued[l].
Hou'ever, learning algorithms directly implemented on
integrated circuit hardware have a lot of handicaps as

compared to software learning algorithms running on

computers. An example is the range of synaptic weight
adjustment, which is *o in sofhvare but is certainly
limited in hardware learning. In Hardware-
Backpropagation (HBP) algorithm[2], a hardware-
oriented learning algorithm we have developed for
Neuron MOS (UMOS) neural networks[3] by
simplifying the original backpropagation (BP)[4], the
weight value is limited only in the range of 0 to Vnn.
Such a restriction to the original BP severely degrades

its learning performance. Furthermore, the sigmoid
function and its derivative are approximated by a step

function and a window function in HBP, respectively, in
order to facilitate their circuit implementation using u
MOS[S]. The purpose of this paper is to investigate the
hardu'are-learning performance of UMOS neural
netu'orks that suffer from such restrictions using
computer simulation. For rnirror symmetry problem
solving, We u'ill demonstrate a superior generalization
characteristics of HBP to that of original BP.

LEARNING SIMULATION

The two-dimensional miror symmetry problem
solving was employed for learning simulation. The

Fig.Z Neural network architecture used for
learning simulation.
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present in a pattern, only one axis was toughed to the

network. Typically 100-200 problems were generated

for each learning session. After learning iteration of
L04/sample, the percentage of correct ans\ryers for
learned problems was evaluated. The weight value of a
synapse was set in the range of tL, which corresponds to
the voltage range of 0 to VOU on the hardware. The
initial weights were set at randorn values in the range of
,0.25. In this simulation, the number of hidden-layer
neurons were 12 for the data in Figs. 4 and 5, and 1.5 in
Fig. 7.

In Fig. 3, the HBP algorithm is schematically
compared to BP, where NET - -L, 0, and 1 on the
abscissa correspond to the dendrite potentials of 0,
Ypp,lZ, and Vpp on the hardware, respectively. In
HBP, weight modification is done only when the NET
(weighted sum of inputs for a neuron) falls into the
range of *e. The learning region(e) and the learning
rate(q) are the two major parameters determining the
learning performance of HBP. Optimization of pertinent
parameters were carried out by computer simulation and

the results are presented in the following.
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Fig.3 Hardware Backpropagate (HBP) algorithm
in comparison with original BP.

I RESULTS AND DISCUSSION

Figure 4 demonstrates the optimization procedure
of e for output-layer neurons(a) and for hidden-layer
neurons(b). For output-layer neurons, the learning
performance is largely the same when e is larger 0.03.
On the other hand, e in the hidden layer certainly has an
optimum range of values between e=0.0L and 0.L, where
almost l00Vo learning performance is achieved. It is
believed that the role of hidden layer neurons is to
classify input patterns according to their characteristic
features. When the learning region u'idth(+e) is too
large (e>0.1), very frequent updating of connection
weights occurs in each hidden-layer neuron, which is
not desirable for a hidden-layer neuron to establish its
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Fig.4 Learning performance of a network as a function of
e in the Output layer(a) ande in the Hidden layer(b)

Fig.5 Percent correct for 200 learned problems
as a function of learning rate.

resonant response to specific kind of patterns. If the
width is made too small (e<0.01), the neurons can
hardly learn. This is why the e in the hidden-layer has
an optimum range. For e in the output-layer neurons,
however, frequent weight updating is rather favorable
because the neurons must classify a number of
excitation patterns in the hidden-layer neurons into only
three categories. From these results, the values of e \4rere
determined as 0.1 in the output layer and 0.01 in the
hidden layer.

The optimization of the learning rate(q) is shou,n in
Fig. 5, indicating the degraded learning for larger
learning rate. This is related to the restriction of the
weight range of *1, resulting in a small number of
available weight values when 11 becomes large. For this
reason a small value of rl - 0.01 was adopted.

Figure. 6 shows the percent correct for 200 learned
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Fig.6 Percent conect for 200 learned problems as

a function of the number of Hidden Layer neurons.
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Fig.7 Comparision of learning performance(a)

and genaralization(b) for HBP and BP.
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Under the condition that all pertinent parameters are
optimized and the noise margins (marginal region)[3]
are also taken into account, the learning performances of
HBP and original BP are compared in Fig. 7. The
percent correct for problems that were used in learning
sessions is almost the same for HBP and BP as shown in
Fig. 7(a). However, if the weight range is restricted to =
L in BP as in the case of HBP, learning performance is
severely degraded. Most interesting is the result shown
in Fig. 7(b), where the generalization capabilities of the
networks are compared. The generalaation is the
ability to solve new problems not shown during the
learning phase. The percent correct for 800 unlearned
problems are largest for HBP. HBP is equivalent to
original BP in the learning ability, but is superior to BP
in the generalization capability.

U CONCLUSIONS

The learning perfornance of the hardware-oriented
learning algorithmcfBP) developed for UMOS neural
networks, has been evaluated by computer simulation.
When the pertinent parameters(e,q etc.) were optimized,
HBP shows the same learning performance as that of
original BP despite its inherent restrictions. In particular,
HBP is superior to original BP in the generalization
capability. It was also found that both learning and
generalization performances are severely degraded in
BP when the range of weight adjustment is limited. We
can conclude that HBP is a very powerful Iearning
algorithm which can be directly implemented on
integrated circuits hardware.
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