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In this paper we report on the VLSI-implementation of a processor for competitive neural
networks and its prototype implementation. The basic element of our SIMD-processor archi-
tecture are dedicated bit-serial processing elements that allow vector comparison using binary
or integer metrics and support fast parallel minimum search. An AS|C with 32 processing
elements was implemented. Systems with up to several thousand neurons can be implemented
with our architecturefor applications as image coding, classification and associative processing.

1. INTRODUCTION

Lateral inhibition in competitive neural algorithms
is commonly formulated as a search for the minimum
distance or maximum correlation between an input pat-
tern vector and the corresponding neuron weight vector.
In Kohonen's self-organizing feature map (SOFM)1), for
instance, competition between neurons is computed with
Kohonen's short-cut algorithm, determining the nearest
neigbour neuron N; to stimulus Xs is by:

lrj - minilo(llxn -W,ll) (1)

Here llxn - fi{ll stands for an arbitrary vector norm,
e.9., the Euclidean distance, the Manhattan distance,
or for binary vectors the hamming distance. This com-
putation of vector distance followed by minimum dis-
tance search is of interest for several important appli-
cations, e.g. vector quantization for image and speech

coding, nearest neighbor classification in pattern recog-
nition, neural networks and neural associative memories.
lmplementation by bit-parallel processors seems attrac-
tive as a fast solution but is hampered by two features
of this approach. First, the limited carrier pin count is

an obstacle for the integration of a significantly large
number of processors on one chip. Second, the mini-
mum search will be a bottle neck, consuming consid-
erable time of the overall computation. Alternatively,
processor architectures with a large number of bit-serial
processing units can be considered.
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2. ARAMYS-ARCHITECTURE

In our work we have developed an efficient bit-
serial processor that oflers a viable alternative to the
bit-parallel approach. The basic element of the proces-
sor is a dedicated up/down counter that can be used
for two binary metrics, Hamming distance (EXOR) and
correlation (AND), rnd one integer metric, Manhattan
distance (s. Fig. 1).
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Fig.1 Processing element (neuron) with counter for met-
ric computation. Manhattan distance is computed from
MSB to LSB counting at corresponding counter stage Z

to 0 activated by global Count Position Control. The
principle of the competition mechanism is sketched in
the figure.

This counter cell computes in a single bit-serial
step the vector component difference, the absolute of
this difference and accumulates it to the overatl distance.
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Count actions are carried out observing the incom-
ing bit pairs Xrs* and Wi* as given in Table 1. The
computation starts from MSB to LSB, observing
the first pair with Xns f Wit, which determines
whether X{ > W6 or vice versa. For X;s } Wi;
column 3 is used subsequently for count actions,
for Xl
cases lxf - Wyl is computed and accumulated to

llxn - Wll. No further registers are required.

X;sr Wj;/, Count action Reversed action
1 1 No count
1 0 Up count 2k

0 1 Down count 2fr

0 0 No count

No count
Down count 2k

Up count 2ft

No count

Table.l Count actions for observed inputs Xoe* and
W1;n.

The minimum search of eq. 1 is also carried
out by a bit-serial procedure, but in parallel for all
neurons. Each neuron is equipped with an addi-
tional flag indicating participation in competition.
Initially all neurons are participating in competi-
tion. Starting from the most significant counter bit
for all neurons in the SlMD-computer a wired-OR
value of all bit values at the current bit position
is computed. Every participating neuron compares

its local bit value with this global bit value. In case

of a global'0' and a local "1" the corresponding
neuron will no more participate in competition, as

there is at least one neuron with a smaller activa-
tion or distance value. Thus, after proceeding to
the least significant counter bit, only those neu-

rons having the minimum distance value are still
in competition and marked active. Active neu-
rons are identified by a priority encoder, which also
gives a tie breaking rule for the order of selection if
more than one neuron is active. By repetitive com-
petition the k-nearest neighbors of an input vector
Xs can be computed. A neuron is blocked from
participating in competition when an overflow oc-

curs during distance computation. This mecha-

nism can be exploited by setting an initial counter
value as global or local threshold, thus limiting
the distance computation to well defined hyper-
spheres. This can serve to implement a rejection
threshold for nearest neighbor classifiers or for the
implementation of the RCE (Restricted-Coulomb-
Energy) classifier2). Additionally, counter values
can be read out and transferred to the svstem con-
troller for further processing.

3. ARAMYS-I ASIC

We have implemented this architecture by .
standard cell chip comprising 32 of these simple

neurons. Weight memory is off-chip in standard
RAM chips or modules. The chip is packaged in a
68 pin CLCC carrier and was manufactured with
1.0pm process, featuring an area consumption of
nc 56 ffiffi2, 13783 cells, 33449 gates, and 133799

transistors (s. Fig. 2). The chip runs at 20 MHz

Fig.2 ARAMYS-II standard cell chip with 32

bit-serial processors.

(maximum 23 MHz) and can be cascaded to a

SlMD-computer of an arbitrary size. Currently,
four chips are integrated in a prototype system (s.

Fig 3.) developed as a research tool and demon-

strator for neural networks and neural associative

memories, coined ARAMYS (Autonomous Real-

time Associative MemorY System). Referring to
the prototype system, the chip is denoted as ARA-
MYS-II. The chip was tested in the prototype sys-

tem and current work focuses on the extension of
the prototype system as a demonstrator, e.8. for
vector quantisation in image coding, classification
in pattern recognition, parallel template matching,
and image inspection in automated visual indus-
trial quality control. The ARAMYS system con-

troller is based on a PC-board and the system
works as a neural coprocessor for the PC host. Our
architecture offers a basis for the efficient imple-
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mentation of vector quantizers3), k-nearest neigh-
bor classifiers (k > 1)+) s1, hypersphere

Fig.3 Module board of the ARAMYS-prototype
system with four ARAMYS-II chips and the

corresponding weight vector memory.

classifiers2), and SOFMsl). Application domains
for classification and pattern matching are, for in-
stance, mechatronic and visual industrial quality
control tasks. Real-time constraints can be met
by adding chips and processing modules. For in-
stance, processing speed can be doubled when two
input vectors are processed in parallel doubling the
number of processing elements and chips. For do-
mains of significant real-time demands, e.g. im-
age codingr &fi improved version of our architecture
was designed as a full-custom implementation, de-
noted as ARAMYS-III. First simulations showed a
speed of t 80 MHz for a neuron cell, thus coming
well in the range for real-time vector quantization
of video phone images.
The architecture of the neuron allows an enhance-
ment to implement a simplified version of SOFM
with on-chip learning. The learning rule of Koho-
nen's SOFM algorithm can be simplified to:

*tr;- - *jlf + ki - .j',!) >> (o(t, r)) (z)

A box function is assumed for the neighborhood
function. The learnrate and the neighborhood width

are globally computed and broadcasted along with
the winner index to the individual neurons. Each
neuron performs a local computation determining
whether it is inside or outside the the box centered
at winner If". This can be accomplished using the
counter for computation. The multiplication in
the learning rule is replaced by shift right oper-
ations (o(t,r(t))
be carried out by our processing element, as shift
right can be accomplished by starting the count
algorithm at a lower counter bit position, e.g. for
a right shift of 3 bit positions we start the ser-

ial computation at positi on 27-3 - 2a instead of
27. Thus, with very little additional overhead our
neuron can be extended to a SOFM neuron with
on-chip learning. We currently model such a par-
allel SOFM-architecture using VHDL.
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