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A Neuron-MOS Neural Network Using Low-Power
Self-Learning-Compatible Synapse Cells

Tadashi SHIBATA, Hideo KOSAKA, Hiroshi ISHII, and Tadahiro OHMI

Department of Electronic Engineering, Tohoku University
Aza-Aoba, Aramaki, Aobaku, Sendai 980 JAPAN

A self-learning neural network hardware has been developed using Neuron MOS Transistor
(vMOS) as a key circuit element, which is a functional device simulating the actions of
biological neurons at a single transistor level [1]. Synapse cells are formed by merging an
EEPROM memory cell into a new-concept vMOS differential-source-follower circuitry.
As a result, synaptic connections free from standby power dissipation and featuring
excellent weight-updating characteristics have been established. The operation of the
synapse cells and vMOS neural networks has been verified using test circuits fabricated by
a double-polysilicon CMOS process. An interesting feature of the synapse cell, the
acceleration effect in learning, is also presented.
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1.. INTRODUCTION
Neural networks are now drawing a considerable

attention as a new paradigm of information processing
due to their self-adaptive problem-solving capabilities.
The essence of the adaptive learning of a neural
network is the modification of the synaptic weights to
establish desirable response of the system in solving
problems. Therefore the development of an electronic
version of the synaptic connection compatible to
learning algorithms is most essential in developing the
self-learning hardware of neural networks.

The purpose of this study is to develop neural
networks using Neuron MOS Transistor (vMOS)[1] as
a key circuit element. In order to establish an on-chip
self-learning function on vMOS neural networks, a new
synapse memory cell has been developed l2l and
employed in this work. The circuit implementation of a
hardware-oriented learning algorithm (Hardware
Backpropagation) t3l and the verification of its
powerful capability in solving problems t4] are
presented in separate articles.

2. NEURAL NETWORK CONFIGURATION
A single neuron module is schematically shown in

Fig. 1 where a neuron is composed of a complementary
vMOS inverter having all identical coupling capacitors
and a regular CMOS inverter. Vr - Vn-arelhe outputs
of previous-layer neurons, being multiplied by the
respective weights at synapses, and then, transferred to
the neuron inputs. Since the neuron has hard-limiter
characteristics, V, takes either a binary L or a binary 0.
Then the function of the synapse is just transfening the
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Fig. 1. Schematic of a neuron module composed of a
complem:entary vMOS inverter ond synapse cells.

weight W to a neuron input when V, - 1". The net =
>W,V, is automatically calculated by charge redistribution
on the floating gate and then squashed into a 0 or a l-.

The synapse cell is shown in Fig. 2, where Tr. L is
always ON in the forward network operation. The charge
on the synapse floating gate Qps representing the synaptic
weight is non-destructively read out by source follower
actions of both N- and P-vMOS' which share the
common floating gate. These source followers are
merged into CMOS inverters to cut off the dc current
paths, thus achieving the standby-power free feature of
the cell. The output voltages of both N- and P-vMOS
source followers are transfened to the common neuron
floating gate (dendrite) via capacitance coupling, thus
being averaged on the dendrite.

The measured output wave forms of N- and P-
vMOS source followers (V* and V-, rcspectively, on the
figure) are shown in Fig. 3. The effective synapse output
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Fig. 2. Complementary vMOS differntial source-follower
circuit for synape cell.

Fig. 3. Measured outltut wave forms of N-vMOS (V") and

P-vMOS (V') source followerc in the synape cell.

V"n = (V* + V)12 vs. synapse floating-gate potential

Qrt is shown by experimental data in Fig. 4. The cell

can represent either an excitatory synapse (positive

weight) or an inhibitory synapse (negative weight)
depending on whether V"u is larger or smaller than

Y,JZ, the neutral output of a synapse, respectively.
Since Qrs = QFs/Crors (Q*tt the total capacitance of
the synapse floating gate), the weight value can be

altered by electron injection or exfiaction through the

tunnel oxide by giving programming pulses to both V*
and Vr. Since the programming occurs only at the

crossing points of V* and V" lines running over the

synapse cell anay, a Hebbean-like,learning algorithm

can be easily implemented. Such a selective cell
programming technique was first introduced in a dual-
control-gate EEPROM cell [5].

3. NEURAL NETWORK OPERATION
In order to verify the operation of vMOS neural

networks, a simple test circuit was designed and

fabricated by a double polysilicon CMOS process. Fig.

5 shows the network configuration and a

photomicrograph of the circuit. In this circuit, the
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Fig. 4. Measured synape output as a function of the synapse

floating - gate lntential.

Fig. 5. Network configuration and photomicrograph of test

vMOS neural network

floating gates of synapses are directly connected to
external electrodes and their potentials were set by

external voltage sources. The weight values were

determined by learning simulator based on the Hardware

Backpropagation (HBP) algorithm [3,6]. Fig. 6 shows the

measured circuit responses when it learned the XOR or
OR functions, demonstrating the conect operation of the

vMOS neural network.
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FiS. 6. Measured output characteristics of the test neural

network which learned XOR and OR Boolean functiorrs.
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4. WEIGHT UPDATING CHARACTERISTICS
EEPROM cell writing by applying constant voltage

pulses exhibits a strong nonlinear dependence on the
number of pulses due to the non-linear J-V
characteristics of a Fouler-Nordheim tunneling current.
This is one of the most critical issues of using
EEPROM technology for synapses [7].

The synapse cell shown in Fig. 2 has solved the
problem very beautifully by just adding an NMOS
transistor (Tr. 1) to our original six-transistor-version
synapse cell [6]. When Tr. f. is on, the output of the N-
vMOS source follower is fed back to the tunneling
electrode and reset the voltage across the tunnelinf
oxide always at a constant value of V^ (the threshold
of N-vMOS) indifferent to the amount of charge stored
on the floating gate. This assures the constant charge
injection (or extraction) under a constant programming
pulse. Fig. 7 compares the weight updating
characteristics of a conventional cell (no feed back) and
the new cell, where the excellent linearity is evident for
the new cell. Such a feature is quite essential for
hardware learning of neural networks

CONVENTIONAL CELL NEW CELL

time in our new cell by optimizing the
coupling capacitance ratios. This provides a
implemcnt the acceleration effect in weight
which is advantageous in enhancing the
performance of the circuit as shown by the
learning simulation in Fig. 9.
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Fig. 7. Comparison of weight-updating characteristics of
conventional cell (without source follower feedback) and new
synapse cell (with feedback).

Further advantage of the new cell is demonstrated
in Fig. 8, where the measured increment in the cell
threshold voltage AVo (equal to -AQFsrcr'rt) is plotted
against Vo. The data indicates that the larger the total
number of electrons in the floating gate is, that the
more electrons are injected per pulse. This phenomenon
is quite unnatural and has been realized for the first
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Fig. 9. Learning performance of three-input Exclwive OR by
HBP for varying acceleration cofficients. Ordinate represents
the convergence probability of learning for 50 different initial
random -wei ght patterns.

5. CONCLUSIONS
The construction of a self-learning neural network

using vMOS technology has been discussed and the basic
design concepts have been verified by experiments. The
excellent linearity in weight updating characteristics or
even the acceleration effects provided by the new
synapse circuits are able to be used very favorably in
enhancing the learning performance of the hardware.
vMOS neural networks operates purely in the voltage
mode, making the approach - much superior to
conventional current-mode approach in terms of low-
power dissipation, which is the most important
requirement of ultralarge scale integrated systems.
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Fig. 8. Acceleration


