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Device-quality homoepitaxial SiC crystals have been grown by atmospheric vapor phase
epitaxy on off-oriented substrates prepared by a sublimation method. Recently, high-voltage

p-n junction and Schottky rectifiers, MESFET’s,

MOSFET’s, and thyristors have been demon-

strated utilizing high-quality SiC epitaxial layers. The present advanced stage of SiC crystal
growth techniques and the state-of-the-art SiC high-power device application are presented.

1.INTRODUCTION

Development of semiconductor materials to real-
ize higher power and frequency devices in the power-
electronics field, where Si is not adequate because of
the limit of inherent properties, has been strongly
required in these days.

Silicon carbide (SiC) has been regarded as a
promising semiconductor material for high-power de-
vices, owing to its excellent electrical properties [1-3].
Recently, 1-inch wafers of 6H- and 4H-SiC grown by
a sublimation method have been commercially avail-
able, and high-quality homoepitaxial layers have
been obtained by means of a vapor phase epitaxial
growth technique [4-6]. Thus, the research on SiC
applying to power devices has become active, and
the number of reports on them has been increasing
year by year [7-14].

In this report, high-quality crystal growth of 6H-
and 4H-SiC and those excellent electrical properties
are introduced. The state-of-the-art SiC high-power
devices utilizing the high-quality epilayers are pre-
sented.

2.CRYSTAL GROWTH AND ELECTRI-
CAL PROPERTIES OF SiC

6H- and 4H-SiC homoepitaxial layers are grown
on off-oriented 6H- and 4H-SiC {0001} substrates
by VPE at 1500°C, which is called “step-controlled
epitaxy” [15,16]. The density of surface steps is
increased by angle lapping, and utilizing step-flow
growth, the polytype-controlled epitaxy at low tem-
peratures can be realized. Crystal quality of sub-
strates has been improved, and step-controlled epi-
taxial growth condition has been optimized. As a
result, high-purity and high-quality single crystals
have been obtained in these days [5,6,17].

Figure 1 shows the temperature dependence of
electron mobility in step-controlled epitaxial 6H- and
4H-SiC {0001} planes. An electron mobility as high
as 720cm?/Vs was obtained at 292K in 4H-SiC epi-
layers with a carrier concentration of ~2x10%cm—3.
At 77K, the electron mobility increased up to 11,000
cm?/Vs. Besides, the electron mobility of 4H-SiC is
about two times higher than 6H-SiC (380cm?/Vs) in
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the {0001} plane. The breakdown field versus donor
concentration of 6H- and 4H-SiC is shown in Fig.2.
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Figure 1. Temperature dependence of electron mo-
bilities in 6H- and 4H-SiC epilayers.
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Figure 2. Breakdown field versus donor concentra-
tion in 6H- and 4H-SiC.



The solid curve denotes the values reported in 6H-
SiC previously [18], and the broken curve the values
in Si. The high breakdown fields (~3x10%V /cm)
were obtained, and there are no significant differ-
ences in the breakdown fields between 6H- and 4H-
SiC.

Baliga has reported the figure of merit for high
power devices [19], and higher electron mobility and
breakdown field are more suitable for high-power de-
vice applications. From the above results, SiC can
be regarded as the most hopeful material for high-
power devices, and 4H-SiC is superior to 6H-SiC.

3.FEASIBLE SiC POWER DEVICES

3.1 High-Voltage P-N Junction Rectifiers
6H-SiC p-n junction diodes were fabricated
in 6H-SiC epilayers grown by VPE, and utilizing
high-purity n-type regions (Ng~10'*~10"%cm™3),
the breakdown voltages increased up to 2.0~4.5kV
[20,21]. The above result reflects the significant im-
provement of purity and quality in SiC epilayers.

3.2 High-Power Transistors

The theoretical analysis of SiC MESFET’s has
been carried out, and high output power at high
frequency (65W at 10GHz) has been predicted in
6H-SiC MESFET’s by Trew et al [1]. Sriram et al.
have reported that 6H-SiC MESFET’s showed high
fmaz of 25GHz and RF gain of 8.5 dB at 10GHz,
while operating at a high drain voltage of 40V [12].
As for 4H-5iC MESFET’s, the device having fpaz of
12.9GHz and RF gain of 9.3dB at 5GHz (2.2dB at
10GHz) has been reported by Weitzel et al [13]. The
output power density was 2.8W/mm at 1.8GHz with
a high drain voltage of 54V.

SiC MOSFET’s have also been considered for the
use in high-power application due to their high-speed
switching and low power-loss characteristics. Re-
cently, the vertical power UMOSFET structures in
both 6H- and 4H-SiC were reported by Palmour et al
[14,18,22]. The 6H-SiC UMOSFET’s showed a max-
imum transconductance (gmq,) of 6.75mS/mm and
a threshold voltage of 3.7V. The devices withstood
current densities of 190A/cm?. On the other hand,
the 4H-SiC UMOSFET’s withstood 550A /cm? and
power densities greater than 10kW /cm?. The spe-
cific on-resistance was 17.5x1073Qcm?. The gnaz
for this device was about 10mS/mm, and a highest
blocking voltage of 180V could be realized. These
6H- and 4H-SiC UMOSFET’s operated well up to
300°C.

3.3 Thyristors

Bipolar power device structures have also been
reported, and these had collector voltages as high as
200V and current gains as high as 10.4 [18]. Addi-
tionally, both 6H- and 4H-SiC npnp thyristors have
been demonstrated [18,22]. The devices based on
6H-SiC showed forward and reverse voltages of 160V
with no gate current. The forward breakover voltage
was reduced to -6V with a trigger current of —200uA.
The built-in voltage and specific on-resistance were
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2.65V and 3.6x10~3Qcm?, respectively. These de-
vices operated well up to 500°C. For 4H-SiC npnp
thyristors, forward and reverse blocking voltages of
210V with no gate current were realized. The for-
ward breakover voltage was much reduced to -3.1V
with a trigger current of —-500pA. The built-in volt-
age of 2.85V was higher than 6H-SiC. The specific
on-resistance of 1.75x10™3Qcm? was obtained, how-
ever. The improved on-resistance results in a lower
voltage drop for high current density in spite of
higher built-in voltage as compared with 6H-5iC.

4. HIGH-PERFORMANCE SiC SCHOTTKY
RECTIFIERS

In high-voltage switching devices, Schottky recti-
fiers are useful to realize high-speed switching char-
acteristics as compared with p-n junction rectifiers
because the carrier transport is mainly due to ma-
jority carriers and accumulation time of minority
carriers is irrelevant in Schottky rectifiers. Further-
more, using SiC, high blocking voltage characteris-
tics would be realized with thin drift layers, which
leads to being low specific on-resistances.

High-voltage (>1.1kV) Au/6H-SiC Schottky rec-
tifiers were fabricated by our group [8]. The
rectifiers showed the low specific on-resistances of
~8x1073Qcm?. The high-temperature operation
was realized at 400°C keeping low specific on-
resistances which had a temperature dependence of
T20,  Recently, further reduction of specific on-
resistances could be realized utilizing 4H-SiC Schot-
tky rectifiers keeping high blocking voltage charac-
teristics as shown in Fig.3 [9,10]. The broken and
solid curves denote the theoretical limits for Si, 6H-
, and 4H-SiC rectifiers. The high blocking voltages
(~1kV) 4H-SiC Schottky rectifiers with specific on-
resistances of ~1x10™3Qcm? were fabricated. These
rectifiers showed high-speed switching characteris-
tics [23]. From the theoretical analysis of power loss,
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Figure 3. Specific on-resistance versus breakdown
voltage in Si, 6H-, and 4H-SiC.



the optimization of Schottky barrier height is cru-
cially needed to reduce the power loss as low as possi-
ble. Ti/4H-SiC Schottky rectifiers showed the most
efficient characteristics [10,23]. The edge termina-
tion was employed using ion implantation technique
[9,23], so that the blocking voltages increased up to
ideal values, and reverse bias characteristics were im-
proved as shown in Fig.4.
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Figure 4. Current-voltage characteristics in Ti/4H-
S5iC Schottky rectifiers with/without edge termina-
tion.

5.SUMMARY

Recent progress in crystal growth techniques and
power device application technology for SiC is re-
markable. High-voltage and high-power devices re-
quiring high-frequency and high-temperature opera-
tion, which can not be realized using Si, have been
realized in these days. SiC-based high-power devices
will be made fit for practical use in the near future.
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