Statistical Performance-Instability Due to Three-Dimensional Nonuniformity of Dopant Atoms in a System of Many MOSFETs

Tomohisa Mizuno

ULSI Research Laboratories, TOSHIBA Corporation 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan

We have experimentally and analytically studied the influence of the statistical spatial-nonuniformity of dopant atoms on the threshold voltage V_{th} in a system of many MOSFETs. According to experimental results and our analytical model, it is found that the nonuniformity of dopant atoms along the channel (the lateral nonuniformity) causes the unstable drain bias dependence of V_{th} . Moreover, the substrate bias dependence of V_{th} fluctuates due to the vertical nonuniformity of dopant atoms which is perpendicular to the channel. Consequently, V_{th} fluctuation is caused by the statistical spatial-nonuniformity of dopant atoms as well as their total-number variation in the channel depletion volume.

1 Introduction

With scaling the MOSFET dimensions down, we have experimentally and analytically demonstrated that the threshold voltage V_{th} fluctuates due to the statistical total-number variation of dopant atoms in the channel depletion volume [1]. It is considered that this will become a serious problem in realizing future ULSIs [2]. In addition, the spatial distribution of the dopant atoms of the local region in the channel depletion volume is supposed to be statistically inhomogeneous, because the dopant atom number statistically and independently fluctuates

In this study, we have experimentally and analytically shown V_{th} instability caused by the spatial nonuniformity of dopant atoms in a system of many MOSFETs.

2 Experimental

Using an 8192 MOSFET array in less than 0.7 mm^{-2} [1], V_{th} of an individual n-channel MOS-FET can be measured. A MOSFET has a single drain structure in relatively uniform dopant distribution (p-well structure) whose peak concentration of $N_a=1\times10^{17}$ cm⁻³ is determined by the substrate bias sensitivity of V_{th} . The gate oxide thickness was 10 nm. The effective channel width was 1 μ m and the effective channel length was varied from 0.5 μ m to 0.3 μ m. The measurement error of V_{th} (4 σ) was 0.5 mV in this study.

3 Model for Lateral and Vertical Nonuniformity of Dopant Atoms

In this section, we introduce the experimental method for evaluating the influence of spatial nonuniformity of dopant atoms on V_{th} . Here, we discuss the inhomogeneously distributed dopant atoms which are both parallel (the lateral nonuniformity shown in Fig. 1(a)) and perpendicular (the vertical nonuniformity shown in Fig. 1(b)) to the channel. Figures 1 (a) and (b) show the depletion layer edge by applying the drain and the substrate biases, respectively. The dopant numbers of regions [I] and [II] shown in Fig. 1 independently and statistically fluctuate in both the ion-implantation and the dopant-diffusion processes. As a result, in a system of many MOSFETs, the spatial distribution of dopant atoms becomes statistically inhomogeneous. At first, the influence of the lateral nonuniformity of dopant atoms on V_{th} can be evaluated by applying the drain bias V_d , that is, by increasing the drain depletion width, as shown in Fig. 1(a). V_{th} at very small V_d ; V_{th0} is given by the dopant atoms of both regions [I] and [II], that is V_{th0} = $q(n_1 + n_2)/[W_{eff}C_{ox}(L_{eff} - W_0)] + 2\phi_B + V_{FB}$ where n_1 and n_2 are the dopant numbers of regions [I] and [II], q the elementary charge, W_{eff} the effective channel width, L_{eff} the effective channel length, W_0 the drain depletion width, C_{ox} the gate capacitance, $2\phi_B$ the surface potential, and V_{FB} the flatband voltage [2]. On the other hand, V_{th} at large V_d ; V_{thd} is determined by only n_1 of region [I], that is $V_{thd} = n_1 / [W_{eff} C_{ox} L_{eff} - (W_0 + W_d)/2] +$

 $2\phi_B + V_{FB}$, where W_d is the drain depletion width. Since n_1 and n_2 indepently and statistically fluctuate, the correlation coefficient between V_{th0} and V_{thd} becomes smaller with increasing V_d . Here, we introduce $\Delta V_{thd} \equiv V_{th0} - V_{thd}$. As a result, the influence of the lateral nonuniformity of dopant atoms on V_{th} can be evaluated by measuring V_d dependence of ΔV_{th} fluctuation; $\delta(\Delta V_{thd})$, which can be simply obtained by the variation of V_{th0} and V_{thd} , as follows,

$$\delta(\Delta V_{thd}) = \delta V_{th0} \sqrt{\frac{W_d - W_0}{2L_{eff} - (W_d + W_0)}} \quad (1)$$

where δV_{th0} is V_{th0} fluctuation.

Secondly, as shown in Fig. 1(b), the influence of the vertical nonuniformity of dopant atoms on V_{th} can also be evaluated by increasing the substrate bias V_{sub} . V_{sub} dependence of V_{th} fluctuates with increasing the channel depletion width, because the vertical distribution of dopant atoms is statistically inhomogeneous. Namely, by measuring V_{sub} dependence fluctuation of V_{th} at V_{sub} ; V_{thb} minus V_{th} at $V_{sub}=0$ V; $V_{th0} (\equiv \Delta V_{thb})$, the vertical nonuniformity can be evaluated. This ΔV_{thb} fluctuation $\delta(\Delta V_{thb})$ can also be obtained by calculating the variation of both V_{thb} and V_{th0} , as mentioned in Eq. (1). That is,

$$\delta(\Delta V_{thb}) = \frac{\delta n_1}{C_{ox} W_{eff}(L_{eff} - W_0)} \times \left[\left(\frac{W_d - W_0}{L_{eff} - W_d} \right)^2 + \left(\frac{\delta n_2 (L_{eff} - W_0)}{\delta n_1 (L_{eff} - W_d)} \right)^2 \right]^{\frac{1}{2}}$$
(2)

 δn_1 and δn_2 are the dopant number fluctuations of regions I and II, respectively.

4 Results and Discussion

At first, we show the lateral nonuniformity of dopant atoms. Figure 2 shows the experimental data of the correlation of V_{th} at various V_d in an 8192 MOSFET array. Fig. 2(a) shows that V_{th} has a good correlation in the case of small V_d shift, but it was newly found that V_{th} correlation decreases with increasing V_d , as shown in Fig. 2(b). In order to analyze this unstable V_d dependence of V_{th} , the experimental data of V_d dependence of ΔV_{thd} are shown in Fig. 3. ΔV_{thd} continues to increase by increasing V_d and is enhanced with decreasing L_{eff} . The solid and the dashed lines in Fig. 3 show the calculated results of our analytical model mentioned in Sec. 3. and can explain all the experimental data well. Moreover, the influence of the lateral nonuniformity of dopant atoms on V_{th} can be also evaluated by measuring the asymmetrical V_{th} phenomena in exchanging the source and the drain terminals [3].

Statistical lateral-nonuniformity of dopant atoms can be directly verified by measuring the statistical fluctuation of V_d dependence of N_a obtained by V_{sub} sensitivity of V_{th} . Figure 4 shows the correlation of N_a at V_d =0.1 V and 1.5 V in an 8192 MOSFET array and that the correlation of N_a decreases at large V_d shift, whereas N_a has a good correlation at small V_d shift (not shown here). This is the direct experimental evidence for the lateral nonuniformity of dopant atoms.

Secondly, the influence of the vertical nonuniformity of dopant atoms on V_{th} is shown in Fig. 5. The correlation of V_{th} becomes smaller with increasing V_{sub} shift. Figure 5 shows that ΔV_{thb} increases with increasing V_{sub} and with decreasing L_{eff} . Our model shown by the solid lines can explain almost all experimental data. Therefore, the vertical inhomogeneous-distributed dopant atoms have been experimentally verified by this unstable V_{sub} dependence of V_{th} , as well as the dopant number in the depletion layer volume has already been verified to be statistically fluctuated [1].

5 Conclusion

Using an 8192 MOSFET array, we have experimentally demonstrated that V_{th} is affected by the statistical spatial-nonuniformity of dopant atoms in the channel depletion volume. The lateral and the vertical nonuniformity of dopant atoms induce unstable V_d and V_{sub} dependence of V_{th} in a system of many MOSFETs, respectively. These results are enhanced with decreasing L_{eff} . Therefore, it is necessary to consider the spatially distributed dopant atoms as well as the statistical variation of dopant atom number, in designing MOSFETs in ULSIs.

Acknowledgment

We would like to thank A. Toriumi for his stimulating discussion. N. Arikado, Y. Ushiku, and M. Yoshimi are also thanked for their support.

References

- T. Mizuno, J. Okamura, and A.Toriumi, IEEE Trans. Electron Devices, ED-41, 2216 (1994).
- [2] T. Mizuno et al., in Symp. VLSI Tech. Dig., p.13 (1994).
- [3] T. Mizuno and A. Toriumi, J. Appl. Phys., 77, 3538 (1995).

Fig. 1 Schematic cross section of the depletion layer edge in the channel region, in order to study (a) the lateral and (b) the vertical nonuniformity of dopant atoms. n_1 and n_2 show the dopant numbers of regions [I] and [II], respectively. (a) W_m and ΔW_m show the drain depletion width at small V_d and its shift at applied large V_d , respectively. (b) W_g is the channel depletion width and ΔW_g its shift at applied V_{gub} .

Fig. 2 Correlation of V_{th} at various V_d , where $L_{eff}=0.3$ μm . (a) V_{th} at $V_d = 0.1V$ versus V_{th} at $V_d = 0.2V$. (b) V_{th} at $V_d = 0.1V$ versus V_{th} at $V_d = 1.5V$.

Fig. 3 Standard deviation of $\delta(\Delta V_{thd})$ as a function of V_d . The open and the closed circles show the experimental data at $L_{eff}=0.5 \ \mu m$ and 0.3 μm , respectively. The solid and the dashed lines are the calculated results of Eq. (1) at $L_{eff}=0.5 \ \mu m$ and 0.3 μm , respectively.

Fig. 4 Correlation of N_a at $V_d=0.1$ V and 1.5 V, where $L_{eff}=0.3 \ \mu m$. N_a is obtained by V_{th} shift at applied $V_{eub}=-1$ V.

Fig. 5 Standard deviation of $\delta(\Delta V_{thb})$ as a function of V_{sub} . The open and the closed circles show the experimental data at $L_{eff}=0.5 \ \mu m$ and 0.3 μm , respectively. The solid and the dashed lines are the calculated results of Eq. (1) at $L_{eff}=0.5 \ \mu m$ and 0.3 μm , respectively.