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tL"JJ = tro/ll+0(Vct -Vr)), (3)
I/6y is the front-gate voltage and 0 is the mobiiity degra-
dation factor. We use the following well-known expres-
sion for the impact ionization current [Z]:

Ir*rp - A/B I E^Ip exp(-B /E*),

L Introduction

Recently power-performance advantage of SOI CMOS
over bulk for low-power applications has been demon-
strated and technology com:rrercialization has become
possible [1]. One of the greatest barriers to the introduc-
tion of SOI has been the floating body effect. Floating-
body potential reduces SOI device threshold voltage and,
causes kink, single device latch and early breakdown.
Therefore, an accurate models for the floating body ef-
fects in SOI are of great importance for optimum circuit
desiga. Eowever, the conventional model for impact ion-
ization current [2], [3], based on the assumption that
ln(I1yp /(Io(Vo -Vpsnr))) versus L/(Uo - Vp54,) is
a single straight line for a given technology, yields sig-
nificaat errors, which are manifested as deviation of the
plot from a single straight line [+]-[S]. The deviation
is caused by the influence of the source-and-drain and
body parasitic series resistances and inaccuracy of the
approximations [2], [3] for the marcimum channel electric
field in submicron channel length devices. In addition,
the self-heating effect has to be accounted for. Using
SOI MOSFETs with body terminals, we develop a new
model for the submicron channel length LDD SOI de-
vices.

2 fmpact fonization Current Model

Based on a quasi two-dimeusional model [3], the max-
imum electric field is expressed as

E^- {(Vns-Vps.er)2/t2 *Ern , (1)

where I is the effective leugth of the saturation region.
In order to account for the gate-voltage dependeace of
the saturation electric field we exptess Estr by the re-
lationship [6]

Es.er - 2Vu ex / tt"y 1 (2)

where Vutx is the maximum velocity of the carriers,
treyT is the effective mobility,
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where .r{ and B are assumed to be known constants and
the saturation voltage is determined as:

Vos.at : (Vet - V7)Esa7 L

(4)

(5)

(7)

(uet -vr)+ (1+a *t)Eserl'
where c accounts for charge coupling between the front
and back gates, 7 for the drain-induced conductivity en-
hancement as described in [4, L is the effective channel
length.

Reduction in the threshold voltage as a function of
the body potential Vs is approximated as

LVru - 6m / c",)(ffi - rQ6l (6)
The temperature dependences

po(T) - /ro ("oX To /T)''',
vrB(T) = vr'(".) - (1.2 x 10-_3)?, (8)
V*r.e,x = Vtrex(fr) - (2.3 x 10s)?, (g)

derived i" [8], were used to account for the temperature
effect. The temperature is assumed to be dependent on
the device operating power:

, - To+ (IpVns)Rt + (InVps)' R, (10)
where ? is the operating temperature, ?e is the ambient
temperature.

Appiication of the model requires the effective length
of the saturation region I to be known. Same as in [Z], [3]
we treat I as a process dependeut parameter which needs
to be determined experimentally for each technoiogy.

We e:<press accuracy of the modei by the sum of
squares of impact ionization current measruremeut and
simulation deviations over the range of applied drain
and front-gate voltages:

I tr - r,*o)'- I ? - #,"^rpecp(-*)]',
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( 11)



where f and Ip are measured values of impact ionization
and drain cutreuts, respectively and impact ionization
current is modelled by ( ).

Pararneter extraction for the developed model has

been carried out in two steps. First, the saturation re-

gion effective length I was extracted by the Levenberg-
Marquardt numerical method using miasurements for
tr/p less than 3 V in the low Power a,rea of device oPer-

ation, where the temperature rise can be considered to
be uegligible. Parameters of the operating temperature
dependence (10) and body resistance were extracted us-
ing Is and Ip measurements for Vo rt the range 3 V
- 4.2 V, using the fact that voltage drop on the body
resistance is negligible for higher front-gate voltages.

3 Experimental results and discussion

The developed model was applied to LDD SOI MOS-
FETs with gate width W = tlpm aad the effective
channel lengths L = 0.32; 0.52; 0.72 p'rn. The gate

oxide thickness was 15 nrn and the silicon film thick-
ness was 100 nm. AU SOI MOSFETs have body ter-
minals. - Low-field mobility is pa = 570 crnz /(y ")and mobility degradation factor is d = 0.232 V-L
Gate-voltage-dependent pa.rasitic source and drain se-

ries resistance was extracted and approximated by the
relationship RpslVe t - Vrl - 567(Vst - Tr)-o'88 I
(Fig 1). In Fig 2 a plot of, Ir*rpf (In(Vn - Voser))
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Figure 1: The extracted parasitic soutce-and-drain se-

ries resistance

versus l/(Vo -Vpsn) is shown, where Vo - 3V is the
drain-source voltage applied to the SOI MOSFEtSeries
of almost pa.rallel curves are obtaiued and therefore the
conventioual model [2], [3], based on the assumption
that the above rnentioued plot is a single straight line
for the whole range of applied drain and gate voltages, is
uuapplicable. First, we investigate the influence of the
parasitic source and drain series resistances. In Fig 3 a
plot of I r u p / (I n (Uo - Vp s er)) versus L / (Vp - Vn s .er)
is shown, where I/e is now the voltage, applied to the
iutriusic SOI MOSFET. The intrinsic voltages were cal-
culated as: Vn1nt) : Vp - IpRpslVet - V7] and
Vcy1ntl = Vcs - IpRnslVe t - Vrl/z. When the con-
ventional model [2], [3] is applied for the inlrinsic volt-
ages the measurement data fall approximately on a sin-
gle straight line for lower L/(Vo -Vns.er) , but deviate
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Figure 2: Plot of hupf (Ip(Vp - Vpse3")) versus

L/(Vo - Vnser) for extrinsic applied voltage
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Figure 3: Plot of lr*rpf(In(Vo - Vnser)) versus

L/(Vn -Vnser) for intrinsic applied voltage

from a single straight line for higher L/(Vo - Vps.er),
producing error of more tha.n one order of magnitude .

The deviation is explained by the front-gate voltage de-
pendence of the saturation electric field. In Fig 4 a plot
of, Ilypf (InE^) versus L/8., is made, where E," was
calculated using (1) for the intrinsic voltages, and the
data fall on a single straight line with good agreement
between measurements and calculation.

The extracted values of the velocity-saturation region
effective length I were 0.LI2 l.nnfor L - 0.32 pm,0.L32
pm for L = 0.52 p,rn and 0.150 p,rn for L - 0.72 p,m.

Therefore, the effective length of the saturation region
becomes gate-length-dependent for the submicron chan-
nel length devices.

Finaliy, when the plot of lr*rpf (IoE'") versus L/E*
is made fot Vp up to 4.2 V, deviation from a single
straighi line is observed in the higher electric field re-
gion as shown in Fig 5. The deviation is explained by
the self-heating effect and the threshold voltage reduc-
tion due to body potential equal to the voltage drop on
the drain voltage dependent body resistance. In Fig 6

the extracted parasitic body resistance and in Fig 7 cal-
culated operating temperature are shown.

After voltage drop on the the body resistance and
self-heating effect are accounted for, good agreement
between measurements and simulation of impact ion-
ization current is achieved (Fig 8).
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Figure 4: Plot of Irup f (IoE,") versus t/8,- for intrin-
sic applied voltage
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Figure 7: Plot of the device temperature versus the op-
eratiag power

1o't'

1 o't'
2.O 5.0 8.0 11 14

1/Em (1 o'e mv-1)

Figure 8: Plot of measured and simulated -I /(IoEr.)
versus I/E^ for Vp up to 4.2V rMP

4 Conclusion
It has been shown that an accurate rnodel for impact

ionization current in LDD SOI MOSFETs is obtained
if voltage drops on the parasitic source-and-drain and
body series resistances and the self-heating effect are
accounted for and the gate-voltage dependeuce of the
saturation electric field is included into the expression
for the maximum channel electric field.
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Figure 5: Plot of I /(IpE.) versus tf E,^ for Vp
4.2 V rMp
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Figure 6: The extracted body resistance versus applied
drain voltage
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