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Guided Modes of Electron Wave in a Si-Quantum Wire

Yasushi OKAWA, Hideaki TSUCHIYA, and Tanroku MIYOSHI
Department of Electrical and Elecironics Engineering, Kobe University
Rokko-dai, Nada-ku, Kobe 657, Japan

The eigenmodes of electron wave propagating through a Si-quantum wire are analyzed by self-consistent calculations
of the two-dimensional Schrodinger equation and Poisson’s equation. In the description of the Schrodinger equation,
anisotropic effective mass in the six conduction band valleys is considered exactly. As a result, the eigenenergies
of electron waves and the electron density distributions are found to be greatly affected by the electron-electron
interaction. Further, it is demonstrated that the number of guided modes in the Si-quantum wire are controlled by

the gate bias voltage.

1. INTRODUCTION

Recent progress of semiconductor crystal growth and
microfabrication technologies make it possible to fabri-
cate novel quantum devices with quantum wire struc-
tures. In particular, a Si-quantum wire is one of promis-
ing quantum devices, because it is possible to fabri-
cate nanoscale wire structures through the use of its
matured existing technologies and the quantized con-
ductance has been observed at high temperature over
100K [1]. In this paper, the eigenmodes of electron
wave propagating through a Si-quantum wire are stud-
ied by self-consistent calculations of the two-dimensional

Schrodinger and Poisson’s equations to include the electron-

electron interaction within the limits of Hartree approx-
imation. As a result, the eigenenergies of electron waves
and the electron density distributions are found to be
greatly affected by the electron-electron interaction. Fur-
ther, it is demonstrated that the number of eigenmodes
propagating in the wire can be controlled by applying
the positive bias voltage to the gate electrode.

2. SIMULATION MODEL

A simulation model of Si-quantum wire used in this
study is shown in Fig. 1, where a n-type silicon wire
with a rectangular cross-sectional shape surrounded by
SiOz is put on n-type (100) silicon substrate. A gate
electrode is assumed above the wire to control guided
modes of electron wave. For simplicity, < 001 > axis
is chosen as a propagation direction because only the
diagonal components appear in the reciprocal effective
mass tensor. Since there are three sets of energy lev-
els doubly degenerated, corresponding to the three in-
equivalent alignments of conduction band valleys [2], the
three Schrodinger equations are solved simultaneously
to obtain the eigenmodes of electron waves propagating
through the Si-quantum wire.
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where mj; and my are the spatially varying effective
masses in ¢ and y directions, respectively. The poten-
tial energy of the conduction band V(z,y) is given by
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Fig. 1 Simulation model

V(ra :U) = _345 (z!y) + AE, (a:l y) ) (2)
where AE. (z, y) denotes the conduction-band offset and
¢ (z,y) is the electrostatic potential which is determined

by the Poisson’s equation. The electron density distri-
bution in the quantum wire is defined as

[
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(3)
where F_y 5 (n) is the Fermi-Dirac integral of order —1/2
and given by

F_%(n) - ./o z7 [1+exp (z—r})]dm, “)

where n = (Ep — E;) /kgT. m} is the effective mass in
the z direction, which is assumed to be different for Si
and Si0j regions. g denotes the valley degeneracy equal
to 2 for < 001 > direction. Ep the Fermi energy and
E; the eigenenergy of i-th mode. In the self-consistent
calculation of the Schrodinger equation (1) and the Pois-
son’s equation, the potential change 6¢ is evaluated by
the following equation.
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where Ny denotes the ionized donor density distribution
and n is the electron density distribution defined in the
equation (3), and én, the electron density change due to

8¢, is represented by
2m;
kT

The simulation region is shown in Fig. 2. The Pois-
son’s equation and the Schrddinger equation are dis-
cretized by the finite difference method in the regions
enclosed by the solid and the dashed lines, respectively.
Only for the discretization of the Poisson’s equation, a
nonuniform mesh is used. The boundary conditions for
the Poisson’s equation are d¢/0y =0, =0and ¢ =V
at the boundaries C;, Cy and Cjz ,respectively. As for the
Schrodinger equation, the boundary condition of ¥ = 0
is given. For simplicity, it is assumed that all donors
are ionized and no surface charge exists at the Si-SiO,
interface.

In the simulation, the Schrodinger equation and the
Poisson’s equation are solved iteratively for each gate
bias condition until the self-consistent solution is ob-
tained. In this paper, the iteration is continued until the
change of potential energy becomes less than 0.01meV
at any position.
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Fig. 2 Simulation regions of two-dimen-

sional Schrédinger equation(dashed line)

and Poisson's equation(solid line).
3. SIMULATION RESULTS
In the numerical calculation, the anisotropic effective
mass in Si is taken as m} = 0.19mp and m] = 0.98my,
and the isotropic effective mass of 0.5mg is assumed in
SiO2 [3]. The static dielectric constant ¢ is given as
11.9 and 3.8 for Si and SiO; regions, respectively. The
conduction band discontinuity at the Si-SiOs interface is
assumed to be 3.25eV [4]. The height Ly and the width
Ly of the wire are given as Ly =6nm and L, =20nm,
respectively, and Ny is assumed to be 10*%em~2. The
thicknesses of SiOy surrounding the wire are taken as
L;=30nm and Ly=400nm. Fig. 3 shows the variations
of the subband energies of the three conduction valleys
due to the gate bias voltage for T = 4.5K, where all
energies are measured from the Fermi energy Efr . The
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number of eigenmodes propagating in the wire increases
with the gate bias voltage though there is no channel in
the quantum wire for V;=0V. This is due to the fact that
the potential energy inside the wire region is lowered by
applying the positive bias voltage to the gate electrode.
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Fig. 3 Variations of subband energies due to
gate bias voltage.

2.5

The representative conduction band energy is shown
in Fig. 4(a) for V;=1V. Note that a very large con-
duction band discontinuity(~3.25eV) is assumed at the
Si-5103 interface. The electron density distributions of
the guided modes are shown in Fig. 4(b)-(e). In Fig.
4(b), the electron distribution has a double peak in the
y direction regardless of the fundamental mode. The
electron wave is pushed out toward the both sides of the
wire due to the convex potential profile as shown in Fig.
4(a). It is found that the third and the forth eigenmodes,
that are originally the first and the second eigenmodes
for my = my, my = my, are also strongly affected by the
convex potential profile.

Next, the two-terminal conductance of the Si-quantum
wire is simulated as a function of V; as shown in Fig. 5,
where the source-drain voltage Vsp is given as 2uV. The
quantized conductance in the unit of 4e?/h are clearly
found to the second step. However, the quantized value
of the third step indicates 8¢2/h, because the eigenen-
ergies of the third and the fourth subbands are almost
equal as shown in Fig. 3.

4. CONCLUSION

The guided modes of electron waves in Si-quantum
wire are analyzed by self-consistent calculations of the
two-dimensional Schrédinger and Poisson’s equations.
The higher order modes are included exactly by con-
sidering anisotropic effective mass in the six conduction
band valleys. As a result, the eigenenergies of electron
waves and the electron density distributions are found to
be greatly affected by the electron-electron interaction.
Further, it is demonstrated that the number of guided
modes in the wire can be controlled by applying the pos-
itive bias voltage to the gate electrode. Hereafter, we
will extend our self-consistent calculation model to the
analysis of arbitrarily oriented Si-quantum wires with
arbitrary cross-sectional shapes.
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