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Guided Modes of Electron Wave in a Si-Quantum Wire
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Deporlmer.l of Eleclrical and Electronics Etgineering, Kobe Unioercilg

Rohko-dai, Nada-ku, Kobe 657, Japan

The eigenmodes ofelectron wave propagating through a Si-quantum wire are analyzed by self-consistent calculations
of the two-dimensional Schriidinger equation and Poisson's equation. In the desciption ofthe Schriidinger equation,
anieotropic efiective mass in the eix conduction band'valleys is considered exactly. As a r€sult, the denenergiea
of electron wayes and the electron density distributions are found to be greatly affected by the electron-electron
interaction. r\uther, it is demonstrated that the number of guided modes in the Si,quantum wire a.re controlled by
the gate bias voltage.

1. INTRODUCTION
Recent progress of semiconductor crystal growth and

microfabrication technologies make it possible to fabri-
cate novel quantum devices with quantum wire struc-
tures. In particular, a Si-quantum wire is one of promis-
ing quantum devices, because it is possible to fabri-
cate nanoscale wire structures through the use of its
matured existing technologies and the quantized con-
ductance has been observed at high temperature over
100K [1]. In this paper, the eigenmodes of electron
wave propagating through a Si-quantum wire are stud-
ied by self-consistent calculations of the two-dimensional
Schr<idinger and Poisson's equations to include the electron-
electron interaction within the limits of Hartree approx-
imation. As a result, the eigenenergies of electron waves

and the electron density distributions are found to be
greatly affected by the electron-electron interaction. Fur-
ther, it is demonstrated that the number of eigenmodes
propagating in the wire can be controlled by applying
the positive bias voltage to the gate electrode.

2. SIMULATION MODEL
A simulation model of Si-quantum wire used in this

study is shown in Fig. 1, where a n-type silicon wire
with a rectangular cross-sectional shape surrounded by
SiOz is put on n-type (100) silicon substrate. A gate
electrode is assumed above the wire to control guided
modes of electron wave. For simplicity, < 001 ) axis
is chosen as a propagation direction because only the
diagonal components appear in the reciprocal effective
mass tensor. Since there are three sets of energy lev-
els doubly degenerated, corresponding to the three in-
equivalent alignments of conduction band valleys [2], the
three Schrodinger equations are solved simultaneously
to obtain the eigenmodes of electron waves propagating
through the Si-quantum wire.

*V (x,g)rl,(n,0 = Er!(*,y), (1)

where rn| and rn| are the spatially varying effective
masses in c and y directions, respectively. The poten-
tial energy of the conduction band'V(*,y) is given by

Fig. 1 Simuhtion model

V(r,y) = -e6(s,g)+ A,E"(r,y),

where A,E"(x,y) denotes the conduction-band offset and

6 @,A) is the electrostatic potential which is determined
by the Poisson's equation. The electron density distri-
bution in the quantum wire is defined as

" Q*Ik:r)+-F_t (ri ,n(a,y) = t rh;(a,y)lti @,y)[ trh - -i \

(3)
where F-rlz (rl) ir the Fermi-Diracintegral of order -I/2
and given by

(2)
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where \ = (Ee - n;) /knT. mi is the effective mass in
the z direction, which is assumed to be different for Si
and SiO2 regions. g denotes the valley degeneracy equal
to 2 for < 001 > direction. .Ep the Fermi energy and
E; the eigenenergy of f-th mode. In the self-consistent
calculation of the Schrodinger equatio" (1) and the Pois-
son's equation, the potential change 6{ is evaluated by
the following equation.
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where Na denotes the ionized donor density distribution
and n is the electron density distribution defined in the
equation (3), and dn, the electron density change due to
d{, is represented by

6n =,D,t,,ti #(#)+ 
ardri 

(6)
t

The simulation region is shown in Fig. 2. The Pois-
son's equation and the Schrodinger equation are dis-
cretized by the finite difference method in the regions
enclosed by the solid and the dashed lines, respectively.
Only for the discretization of the Poisson's equation, a
nonuniform mesh is used. The boundary conditions for
the Poisson's equation are Ad l0y = 0, 6 = 0 and 6 = Vs

at the boundaries Cr, Cz and C3 ,respectively. As for the
Schrodinger equation, the boundary condition of r! - Q

is given. For simplicity, it is assumed that all donors
are ionized and no surface charge exists at the Si-SiOz
interface.

In the simulation, the Schrodinger equation and the
Poisson's equation are solved iteratively for each gate
bias condition until the self-consistent solution is ob-
tained. In this paper, the iteration is continued until the
change of potential energy becomes less than 0.01meV
at any position.

c2
Fig. 2 Simulation regions of two-dimen_
sional Schrddinger equation(dashed line)
and Poisson,s equation(solid line).

3. SIMULATION RESULTS
In the numerical calculation, the anisotropic eflective

mass in Si is taken as rnf - 0.19rno and rnf - 0.98rne,
and the isotropic effective ma,ss of 0.5rno is assumed in
SiOz t3]. The static dielectric constant e is given as
11.9 and 3.8 for Si and SiO2 regions, respectively. The
conduction band discontinuity at the Si-SiO2 interface is
assumed to be 3.25eV [a]. The height -t1 and the width
Lt of the wire are given as L7, =6nm and L*-20nm,
respectively, and tr/a is assumed to be 1914.*-3. The
thicknesses of SiOz surrounding the wire are taken as
trr=3Onm and L2-400nm. Fig. 3 shows the variations
of the subband energies of the three conduction valleys
due to the gate bias voltage for T - 4.5K, where all
energies are measured from the Fermi energy ^Ep . The

number of eigenmodes propagating in the wire increases
with the gate bias voltage though there is no channel in
the quantum wire for Vo=Q\/. This is due to the fact that
the potential energy inside the wire region is lowered by
applying the positive bias voltage to the gate electrode.
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Fig. 3 Variations of subband energies due to
gate bias voltage.

The representative conduction band energy is shown
in Fig. 4(a) for Vn-lY. Note that a very large con-
duction band discontinuity(-3.25eV) is assumed at the
Si-SiOz interface. The electron density distributions of
the guided modes are shown in Fig. +(b)-(e). In Fig.
4(b), the electron distribution has a double peak in the
y direction regardless of the fundamental mode. The
electron wave is pushed out toward the both sides of the
wire due to the convex potential profile as shown in Fig.
a(u). It is found that the third and the forth eigenmodes,
that are originally the first and the second eigenmodes
fot m, - rnt, rTty = rmt, ate also strongly affected by the
convex potential profile.

Next, the two-terminal conductance of the Si-quantum
wire is simulated as a function of Vs 6 shown in Fig. 5,
where the source-drain voltage tr/sa is given as 2plV. The
quantized conductance in the unit of. 4e2 /h are clearly
found to the second step. However, the quantized value
of the third step indicates 8e2 fh, because the eigenen-
ergies of the third and the fourth subbands are almost
equal as shown in Fig. 3.

4. CONCLUSION
The guided modes of electron waves in Si-quantum

wire are analyzed by self-consistent calculations of the
two-dimensional Schrcidinger and Poisson's equations.
The higher order modes are included exactly by con-
sidering anisotropic effective mass in the six conduction
band valleys. As a result, the eigenenergies of electron
waves and the electron density distributions are found to
be greatly affected by the electron-electron interaction.
Further, it is demonstrated that the number of guided
modes in the wire can be controlled by applying the pos-
itive bias voltage to the gate electrode. Hereafter, we
will extend our self-consistent calculation model to the
analysis of arbitrarily oriented Siquantum wires with
arbitrary cross-sectional shapes.
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Fig. 5 Variations of quantized conduc-
tance due to gate bias voltage.
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