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Experimental Determination of the Conduction Width in Quasi Ballistic Wires
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Many works have been studied on the tratrspoa phenomena in split gale wires. However, it is diffrcllt to find lhe

begnnmg d quantization, ftr instance, when we change lhe mesn fi€e path of the propagating electul $ave in the gate, In
ud€r to detenine the actual conduction width of lhe x'irc region in rhe gate, we bave shdied m experinental deterdnalion
of the conduclion width in quasiballistic mnow wircs constucted on lhe 2dimensional elecffon grs system of GaAVAIGaAs
hetemjunclion.

1. Introduction

The conductance quantization in a quantum point contact

is easily reatized in a scale-controllable quantum wire with a

split-gated confinement on the 2-dimensional electron gas

tZDnbl slstem.l,z) Many works in such wires have been

studied on the transport phenomena in ballistic or quasi'

ballistic regime.3) When the mean ftee path / of electron

wave propagating in the wire is much longer than the wire
scale, the split-gated wire behaves as a pure ballistic systern

and the conductance quantization occurs. When / is shorter

compared with the wire scale, on the other hand, the

transport in the wire is diffusive (classical) and the

conductance is not quantized but obeys the ohmic law. For
practical, it would be difficult to find the beginning of the

oonductance quantization when we proceed from the classical

transport regime to the quantized one by increasing /.
The transport behavior is determined also by the

oonduction width of the wire. Thus, in order to find the

boundary between the classical and quantum transport
regimes, il is very important to determine the actual

conduction width of split-gated wires. We consider that two
types of the width determined at the both transport regimes

does not agee with each other and that there may exist the

crossover between the both regirnes.

2. Experiments

The split-gated wires were fabricated on GaAs/AlGaAs
wafen with a typical low-temperature mobilities F=10-
4OmzlVs. The wafers were patterned into the Hall bar

geometries with a width of 1.00prn and a voltage probe

sepamtion of l.20pm. The sample lithographic length of the

Figure 1. The top veiw of the split gate is shown in the
SEM photograph. The designed gap and width of the'gate
are 0.6 and 6pm.

gates is ranged from 1 to 6pm. However, the lithographic
gap between the gates was kept constant at 0.6U.m and then
the low-temperature transport was expected to be almost in
the quasi-ballistic regime. The SEM photograph of the top
view of the split gate for the 6pm length wire is shown in
Fig.1.

The low-temperature magnetoresistance measurements

werc perfonned at I.ZK. h order to obtain a narow
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quantum wire, a negative voltage was applied to the gates
so as to deplete the region of a 2DEG undemeath them. The
carrier concentration of the wires was deterrnined from the
periodicity of the,{Un-fiem SdH oscillations and is ranged
from 3 to 7xl0rrqn-Z. The concentration is essentially
independent of the applied gate voltage and also almost
independent of the source-drain bias. As for a classical
determination of the width, the effective conduction width of
the wire could be calculated by assuming a uniform, gate-
voltage-dependedent, depletion layer to exist around the
gates and by associated the change in the channel resistance
with a change in the width of this layer when the gate
voltage varies. We can find the formation of the split-gated
wire at the sharp resistance bend of the dependence on the
gate voltage. The gate voltage and the resistance at the
bending point on the formation of the wire weakly depend
on the carrier concentration, mobility and the wire length.
Since values of those parameters change consistently among
each other in our study, we consider that the actual width at
the bending point has a constant value close to 0.6Fm of
the designed width even at any slight change in our carrier
concentration, mobility or wire length.

3.Results and Discussion

We can determine the two kinds of the conduction width
of the wire, whose length scale is Z, from the two different
view points of classical (ohmic)a) and Quantuml,2)
concepts. h the first, as for the classical width IZo we use
the ohmic transport condition,

Rg= rh

W 

" 
is much larger than i., as in our wires, the channel

number is roughly 2WJhF and then the channel
conductance g per channel and per spin is given by

W"n-nle2
o-4w"ltrt"-2Lh. 

(3)

Therefore, since we have gs&lh nearthe boundary between
the classical and quantum regimes, the maximum value of

(4)

kt Fig.2, a sudden decrease of the classical width W" is
found at I /L4.6, which almost agrees with the vah6 of
( I /L)max.

Next, we delermine the conductance width of the wire by
using the conductance quantization. The quantum width
(gate widttr) Wrof a point contact in 2DEG is given by

trt Lp n
"q -qA. 

(s)

If we can ignore effects due to the boundary scattering and
the mixing between channels, the wire width does not
deviate so largely from the value of W^.In Fig.Z, we show
the value d Wowhich was esrimated 6y using Eq.(5). The
width I7o incrdases as I lL tends to 0.6, and it has a
maximum^ value at the crossover I /Ld..6. Near the
crossover, a similar increase of the width has been obsenred
in the magnetic fiel{. dependence of the universal
conductance fluctuations.)) When ( /L becomes larger than
0.6, the width Wohas a sudde,n decrease dovrn to 0.3pm.
A simple analytic dalculation for the quasi-one dimensional

I /L is given by
lt\ t
[;J_,, -'fr = o-a

(1)

Here, Rn is the gate resistance and p the resistivity of the
wire, bbth of which are determined by the resistance
measurement of the 2DEG region at the zero gate voltage.
Under this ohmic transport condition, we obtain Ro from a
small oorrection for the measured value of the resis?ance by
considering the ratio of the gate arcaw"d to the rest area of
the 2DEG region. Although I is the designed length, it
does not differ largely from the practical value. By using
Eq.(l), we can estimate W" o shown in Fig.2, according to
which W" is almost constant around 0.5-0.6U,m for
( /Ls0.6 and il decleases as ( /L nclreases above 0.6. The

result that W" is almost constant in the rulge of 0.5-
0.6U.m implies the validity of the above ohmic transport
condition in the case of I /L=0.6. From Fig.Z, it is also
clear that those w 

"can 
be scaled with ( /L even at different

length from 1 to 6pm.
We assume here that the ohmic transport can be applied

also near the crossover between classical and quantum
regimes. Under this semi-classical assumption, the Drude
conductivity o is written by

a"
o =znTJ-hAp, 

(z)
where ,l.a is the Fermi wavelength of electron wave. Since

UL

Figure 2. ^I\e Wo and W" are plotted with opened and
closed syrnbols, rdspectively. The designed length of the
wire is indicated in the inset numerically together with its
symbol.
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transport with a finite scattering time in a confinement

potential gives us the transmission probability of electron

wave. Although a detailed discussion will be published

later, we will show the results briefly as following.
h our wire system, the interference effect between

Fopagating electron waves becomes more remarkable as

I lL nueases. We consider that the propagating of electron

wave can be decreased by the Schr0dinger equation,
/\
Iaz , dz,I rr -., +k2+r#,fv("'+) =o
I dx" dy'rl,(6)

where k=?nllu, is the wave number and z is a finite

scattering timb. If we assume that the y-direction

confinemenl is a hard wall potential located at y4 and Wn
and that there exists no confinernent in the x-direction, wb

can put the wavefunction V(ty) into the form of
€

w(',y) = t. o,(.r) , F'ronot.rr i7t V .,q Wq 
,

and then calculate the transmission probability.
The solution of Eq.(6) has a spatial dumping factor

exp(-2,t'lr) when fxl becomes sufficiently large, where.F is

the imaginary part of ^k At the crossover I lL-Zllr, il is

found that k'aiWV From our experimental data around

4 17=!,1n, we can estimate the transmission probability and

the calculated value is about 0.2pm. Since our experiments

werc performed in the conventional split-gated wires at

T=1.2K, it is natural that the analytical calculation does not

agee with the experimental measurement. In order to get

more agreement between them, we must take account of the

finite ternperature effect in the analytical calculations.

Nevertheless, we can consider the appearance of the peak of
Wn in Fig.2 with the transmission probability. Considering

thJ crossover ( llrFlllt, the actual width of classical or

quantum transport regime can be estimated by Eq.(l) or

Eq.(5), respectively. However, we can not determine the

width near the crossover more exactly because of a clear

transition from classical two-dimensional to quantum quasi-

one- dimensional transports.

4. Conclusion

We have observed a clear evidence on the crossover

between classical and quantum transport in the estimation of

the width of the quasi-ballistic split-gated wire. By

decreasing the wire length Z with keeping constant the wire

width and the mean fue path I of electron wave, we can

realize a clear dynamical change from classical to quantum

behaviors in the two terminal measurement of the

resistance. We have found that the crossover regime is given

by l lL&/n. Especially, near the crossover, we have

observed a zudden decrease of the quantum width llzo. As we

have discussed by using the quasi-one-dim'ensional

Schriidinger equation, this effect is considered to be the

result from two dimensional to quasi-one-dimensional

transports. We also consider that those dynamical behaviors

carr be explained by taking account of the phase coherent

region in the wire.

References

l)B.J.van Wees, H.van Houten, C.J.Beenakker,

J.G.Williamson, L.P.Kuwenhouven, D.van der Marel and

C.T.Foxon, Phys.Rev.Lett.60 (1988) 848.

2)D.A.Wharam, M.Pepper, H.Ahmed, J.E.F. Frost,

D.Hasko, D.C.Peacock, D.A.Ritchie and G.A.C.Jones,

J.Phys.C2l (1998) 1209.
3)T.Obishi, M.Kawabe, K.Ishibashi, J.P.Bird, Y.Aoyagi,

T.Sugano and Y.Ochiai, Phys.Rev.B48 (1993) 12353-

4)M.J.M.de Jong and L.W.Molenkamp, to be published in

Phys.Rev.
5)Y.Ochiai, K.Yamamoto, T.Onishi, K.Ishibashi, J.P.Bird,

Y.Aoyagi, T.Sugano and D.K.Ferry, Physica B?nI
(Lee4) 3s7.

967


