Fabrication of Si/Al₂O₃/Si SOI Structures Grownf80by the UHV-CVD Method

T. Kimura, A. Sengoku, and M. Ishida

Department of Electrical and Electronic Engineering, Toyohashi University of Technology Hibarigaoka 1-1, Tempaku-chyo, Toyohashi 441, Japan TEL:0532-47-0111(Ext.564) FAX:0532-48-3422

Si on insulator (SOI) structures have attractive features as a very fast logic device, a environment-hardened device such as a high temperature operated device, and a radiation-hardened device. We have reported epitaxially grown Al₂O₃ films on Si as an insulator material, SOI structures of Si/Al₂O₃/Si and double SOI structures by low-pressure chemical vapor deposition (LPCVD) and Si₂H₆ gas-source molecular beam epitaxial growth. Using these materials, we also have reported that metal-oxide semiconductor field effect transistors (MOSFETs) were fabricated by polycrystalline-Si gate process on the double heteroepitaxially grown Si(100)/Al₂O₃(100)/Si(100) SOI structures and were characterized by measuring electrical properties of the MOSFETs. From these result, it can be seen that electrical properties were similar to those obtained from SOS wafers. However, there are some problems remained such as a flatness of a grown film and reappearance control of a crystallinity.

In this work, to improve a flatness and reappearance of a crystallinity, an ultra high vacuum(UHV)-CVD with a hot wall heating system using an electric furnace was developed, and we present that the double heteroepitaxially grown Si(100)/Al₂O₃(100)/Si(100) SOI structures were fabricated by this UHV-CVD method. These SOI films were characterized by RHEED, ellipsometry, AES depth profile, and a replica electron microscope method.

Epitaxial Al₂O₃ films were grown on 2 in. Si(100) wafers by pyrolysis of N₂ bubbled Al(CH₃)₃ trimethyl-aluminum (TMA) and N₂O at a pressure of 4×10⁻¹Pa in a vertical electric furnace. The substrate temperature of Al₂O₃ growth was 1000°C. The growth rate of the Al₂O₃ were 20Å/min, and the thickness of these films was 600Å. The thickness and the refractive index of the epitaxial grown Al₂O₃ films on Si were measured by ellipsometry. The refractive index of the Al₂O₃ films was ~1.9 at a wavelength of 6328nm.

To fabricate SOI structure, Si epitaxial growth was carried out on the $Al_2O_3(100)/Si(100)$ substrate by the UHV-CVD method. Si_2H_6 was used as the source gas. Substrate temperatures were 950°C. The growth rate of Si film was 400\AA/min .

The growth conditions are summarized in Table I. The epitaxial relationship was Si(100)// $Al_2O_3(100)$ //Si(100).

Epitaxial Al₂O₃ film on Si(100) showed even interference color and flatness surface as shown in Fig. 1. The RHEED patterns from the 600Å thick Al₂O₃ film grown at 1000°C and the 4000Å thick Si film grown at 950°C were streaky as shown in Fig. 2(a) and 2(b), respectively. From the results, crystallinity of Al₂O₃ and Si films grown by UHV-CVD method is considered to be useful for device applications. Thickness in a sample was ranged in ±10%, which was superior to that grown by LPCVD.

By using UHV-CVD method, we will be more easily get the Si(100)/Al₂O₃(100)/Si(100) structures available for SOI devices.

Table I(a). UHV-CVD growth conditions for Al₂O₃

Base pressure 2×10-6 Pa (at 700°C)

TMA(N₂ bubbled) 25 sccm (N₂)

N₂O(100%) 20 sccm

Substrate temperature 1000 °C

Table I(b).UHV-CVD growth conditions for SiBase pressure 2×10^{-6} Pa (at 700°C) $Si_2H_6(100\%)$ 10 sccmSubstrate950 °Ctemperature



Fig. 1 Photograph of heteroepitaxially grown 600Å-thick Al₂O₃/2in. Si(100) wafer.

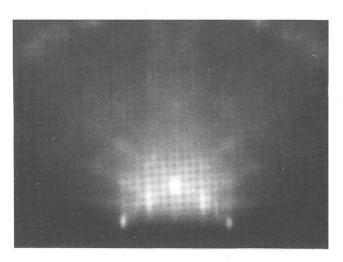


Fig. 2(a)RHEED pattern of 600Å-thick (100) γ -Al₂O₃ film grown on (100) Si at 1000°C by UHV-CVD. The electron beam is along the [110] azimuth.

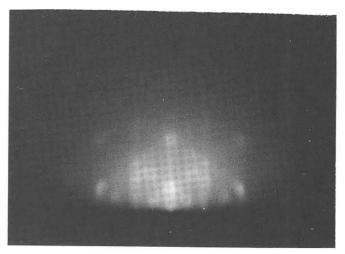


Fig. 2(b)RHEED pattern of the (100) Si grown epitaxially on the (100)Al₂O₃/(100)Si substrate. The electron beam is along the [110] azimuth.