Substrate Misorientation Effect on Self-Organization of Quantum-Wires in (GaP)m/(InP)m Short Period Binary Superlattices

Junji YOSHIDA, Ichirou NOMURA, Akihiko KIKUCHI, and Katsumi KISHINO

Department of Electrical & Electronics Engineering, Sophia University

7-1, Kioi-cho, Chiyoda-ku Tokyo 102, Japan

Phone +81-3-3238-3323, Fax. +81-3-3238-3321

GaInP/AlInP multi-quantum-wire lasers with $(GaP)_m/(InP)_m$ short period binary superlattices active layers were grown on misoriented (100)-GaAs substrates toward [011] direction. The substrate misorientation angle (SMA) reflected self-organization. A strong red-shift in photoluminescence peak wavelength and a large difference in lasing wavelength were observed at SMA of 5°. These results indicated an enhancement of self-organization of quantum-wires by substrate misorientation since an anisotropic adatom diffusion was dominantly along $[01\overline{1}]$ directions by the existence of step fronts paralleled to this direction.

I. Introduction

Quantum-wire (QWR) and quantum-dot (QD) lasers are expected to overcome the lasing properties of quantum-film (QF) lasers. In these structures the reduction in state density is induced by multi-dimensional quantum-size effects, leading to narrower optical gain and to higher differential gain. Through these effects, an extremely low threshold current density [1] and characteristics' temperature $(T_0)[2]$ is theoretically predicted. Moreover, it can be expected that strained QWR lasers can provide further improvement in lasing performances[3] due to strain effect.

Recently, in fabrication of QWR and QD laser structures, self-organization schemes during crystal growth have been employed[4][5]. Among them, the strain induced lateral layer ordering process in $(GaP)_m/(InP)_m$ short period binary superlattice (SPBS) active layers [6] are very effective to fabricate GaInP/AIInP compressively strained multi-quantum wire (CS-MQWR) lasers [4] by a gas source molecular beam epitaxy (GS-MBE).

In this study, substrate misorientation effect on selforganization of quantum-wires in (GaP)m/(InP)m SPBS was systematically investigated for understanding of detailed mechanism and controllability of the configuration of quantum-wires. GaInP/AlInP CS-MQWR laser wafers with SPBS active layers were grown on intentionally misoriented (100)-GaAs substrates toward [011] direction. As a result, self-organization was largely depended on substrate misorientation angle (SMA). A strong red-shift in photoluminescence (PL) peak wavelength and a large difference in lasing wavelength was observed at SMA of 5°. These results indicated an enhanced self-organization of QWRs by substrate misorientation, since an anisotropic adatom diffusion was dominantly along $[01\overline{1}]$ directions because of existence of step fronts paralleled to this direction. While, very weak red-shift in PL peak wavelength and no difference in lasing wavelength were observed at large SMA of 15°

suggesting formation of GaInP quantum-film structure.

II. Fabrication & Laser Structure

In the GS-MBE system, molecular beams of the group III materials (i.e., Al, Ga, In) were supplied as conventional solid sources, while the group V phosphorous beam was obtained through the gas cracking cell using the 100 % pure PH₃ gas[7]. The n- and p- type dopants were Si and Be, respectively. The growth temperature was maintained at 490-510 °C and the growth rate for GaInP bulk crystal was 0.86 μ m/h.

To investigate substrate misorientation effect on

Fig.1 A schematic diagram of GaInP/AlInP CS-MQWR lasers with 18 periods (GaP)_m/(InP)_m SPBS active layers

self-organization of QWRs in $(GaP)_m/(InP)_m$ SPBSs, three types of misoriented (100) GaAs substrates with SMA of 0°, 5°, 15° toward [011] direction were used.

Figure 1 shows a schematic diagram for the investigated lasers, in which 6well MQW active layers consisted of the 18 period (GaP)m/(InP)m short period binary superlattice (SPBS) wells and (GaInP)3/(AlInP)2 superlattice barriers (5nm). The m value was changed from 0.5 ML to 2.0ML (thus, the thickness of well regions was changed). Active regions were sandwiched between (GaInP)₃/(AIInP)₂ short period superlattice cladding (SLC) layers. In the growth of lasers, first n-GaAs (70nm) and n-GaInP (10nm) buffer layers were grown on Si-doped substrates, followed by the sequential growth of CS-MQWR laser layers in the following order: n-AlInP cladding layer (0.7µm), undoped SLC layer (80nm), undoped GaInP CS-MQWR active layers, undoped SLC layer (80nm), p-AlInP cladding layer (0.7µm), p+-GaInP cap layer (280nm).

III. Results and Discussions

PL spectra from SPBSs were measured at room temperature. Figure 2 shows a PL spectrum of $(GaP)_{1,2}/(InP)_{1,2}$ SPBS layer at SMA of 5°. Two peaks were observed, emitting at around 717 nm and 666 nm. The longer one corresponded to the electron-heavy hole emission and the other electron-light hole one, respectively. While at SMA of 0° and 15°, only single peak was observed.

Fig. 2 PL spectrum of (GaP)_{1.2}/(InP)_{1.2} SPBS active layers of GaInP/AlInP CS-MQWR lasers grown on misoriented (100) GaAs substrate at substrate misorientation angle (SMA) of 5°

For further discussion about above results, PL peak wavelengths of $(GaP)_{1,2}/(InP)_{1,2}$ SPBSs layers are shown in Fig.3 as a function of SMA. We note that at SMA of 5°, longer one among two peaks was plotted. PL peak

wavelengths were affected by the compositional modulation in the SPBS induced by the self-organization of QWRs[4]. The PL peak wavelengths were strongly dependent on SMA values comparing with those of GaInP bulk case (shown by squares in Fig.3). At SMA of 0° a slight red-shift was observed, indicating that a weak compositional modulation occurred in SPBS layers. However, QWRs' self-organization was confirmed from TEM images. While, at SMA of 5° the strong red-shift was observed, indicating that the compositional modulation was enhanced by substrate misorientation. Thus, self-organization of QWRs might occur.

(GaP)_{1.2}/(InP)_{1.2} SPBS active layers of GaInP/AlInP CS-MQWR lasers

The self-organization of QWRs might relate to two factors. One was that an adatom diffusion was dominantly along $[01\overline{1}]$ direction[8] due to the existence of dimer and missing dimer rows. The other was segregation of first GaP layer due to a large strain energy induced by a large lattice mismatch to the bottom SLC layer. Since there were step fronts paralleled to $[01\overline{1}]$ direction at SMA of 5°, an anisotropic adatom diffusion and segregation of GaP might be enhanced. On the contrary, at SMA of 15°, PL peak wavelength was blue-shifted and came back to the bulk one. This result indicated the compositional modulation was suppressed, probably due to small step widths.

Figure 4 shows the dependence of PL peak wavelength of $(GaP)_m/(InP)_m$ SPBS on monolayer number m, for three SMA cases (0°, 5° and 15°). Here note that the well thickness was changed with m, as the superlattice period was fixed at 18. At SMA of 0° (see closed circles), for m values below 1ML, the PL peak wavelength became shorter than GaInP bulk levels (indicated by solid lines for 0° and 15°) due to the quantum-size effect, and for m values over 1ML, abruptly

lengthened beyond those indicating the produced lateral compositional modulation. On the other hand, at SMA of 5° , a strong red-shift in PL peak wavelength was observed at m values around 1ML, i.e. the compositional modulation was strongly enhanced even for small m values, showing the substrate misorientation effect. While, for a large SMA value of 15°, the strong red-shift like that was not observed. In this case, $(GaP)_m/(InP)_m$ SPBS wells were disordered forming GaInP quantum-film structure.

Monolayer Number m (ML) Fig. 4 Monolayer number dependency of PL peak wavelength of (GaP)_m/(InP)_m SPBS active layers of GaInP/AlInP MQWR lasers

Fig. 5 SMA dependency of lasing wavelength of GaInP/AlInP CS-MQWR lasers with (GaP)_{1,2}/(InP)_{1,2} SPBS active layers

Figure 5 shows SMA dependencies of lasing wavelength for GaInP/AIInP CS-MQWR lasers with $(GaP)_{1,2}/(InP)_{1,2}$ SPBSs. Two types of 50 μ m mesa-

stripe lasers were fabricated, of which stripe axes were formed along [011] and $[01\overline{1}]$ directions. Difference in lasing wavelength between the [011] and $[01\overline{1}]$ stripes lasers, which showed an anisotropic behavior reflecting the compositional modulation [4], was maximized at SMA of 5°. At SMA of 15°, however, no difference was observed, and crystal disordering was produced for such a large substrate misorientation.

IV. Summary

GaInP/AlInP MQWR lasers with $(GaP)_m/(InP)_m$ SPBS active layers were grown on misoriented substrates A strong red-shift in photoluminescence peak wavelength and a large difference in lasing wavelength were observed at SMA of 5°. These results indicated an enhanced selforganization of QWRs by substrate misorientation, since an anisotropic adatom diffusion was dominantly along $[01\overline{1}]$ directions by the existence of step fronts paralleled to this direction. While, very weak red-shift in PL peak wavelength and no difference in lasing wavelength were observed at large SMA of 15°, forming GaInP quantumfilms.

Acknowledgment

The authors would like to Prof. K. Shimomura of Sophia university and Profs. S. Arai and M. Asada of Tokyo Institute of Technology for their valuable advice.

References

- Y. Miyamoto, Y. Miyake, M. Asada, and Y. Suematsu, IEEE J. Quantum Electron., QE-25 (1989) 2001
- [2] Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40 (1982) 939
- [3] S. Ueno, Y. Miyake, and M. Asada, Jpn. J. Appl. Phys., 31 (1992) 286
- [4] J. Yoshida, K. Kishino, A. Kikuchi, and I. Nomura, IEEE J. Selected Topics in Quantum Electronics, 1 (1995) 173
- [5] N. Kirstaedter, N. N. Ledentsov, M. Grundman, M. Schell, D. Bimberg, V. M. Ustinov, M. V. Maximov, P. S. Kop'ev, Zh. I. Alferov, S. V. Ruvimov, U. Richter, P. Wemer, and J. Heydenreich, in Conf. Dig. 14th IEEE ISLC'94, paper W4. PD2, 1994, Maui, Hawaii, USA.
- [6] P. J. Pearah, A. C. Chen, A. M. Moy, K. C. Hsieh, and K. Y. Cheng, IEEE J. Quantum Electron., QE-30 (1994) 608
- [7] A. Kikuchi, K. Kishino, and Y. Kaneko, J. Appl. Phys., 66 (1989) 4557
- [8] K. Shiraishi, Appl. Phys. Lett. 60 (1992) 1363
- [9] M.Asada, Y. Miyamoto, and Y. Suematsu, Jpn. J. Appl. Phys., 24 (1985) L95