# Self-Aligned Control of Threshold Voltages in 0.1 µm nMOSFETs

### H. Kurata and T. Sugii

## Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-01, JAPAN

We propose a new method for controlling threshold voltages of 0.1  $\mu$ m MOSFETs. We used a large-angle and low-energy tilted ion implantation after polysilicon gate formation. We fabricated 0.1  $\mu$ m nMOSFETs using this process and succeeded in suppressing short channel effects. With the increase in the dose of tilted ion implantation, larger reverse short channel effects appeared. This is attributed to the increase in the concentration of channel impurity for shorter gate length. Hence control of threshold voltages self-aligned to the gate length is possible.

### 1. Introduction

The fluctuation of device characteristics caused by the variation in the fabricated gate length is a critical issue for realizing ULSI devices using 0.1  $\mu$ m MOSFETs. To solve this problem, we propose a new method to control threshold voltages in 0.1  $\mu$ m MOSFETs. As shown in Fig. 1, we use a large-angle and low-energy tilted ion implantation (II) after polysilicon gate formation. For a long gate, the impurity concentration under the center of gate is low, because tilted II is masked by the gate. However, for a short gate, the impurity concentration becomes high, because the tilted IIs from two directions overlap under the center of gate. Hence the increase in the impurity concentration self-aligned to the gate length occurs as shown in Fig. 2.



Fig. 1. Schematic representation of our method for controlling threshold voltage.



Fig. 2. Depth profile of boron under center of gate simulated by SUPREM-4 for each gate length. Tilted II of boron ( $\theta$ =45°) at 10 keV with a dose of 4×10<sup>12</sup> cm<sup>-2</sup> is assumed.

### 2. Device Fabrication

The devices were fabricated by the conventional LDD-nMOS process except for the tilted II after gate etching. The conditions are shown in Table 1. The large tilt angle ( $\theta$ =45°) and low energy (10 keV) II of boron was used. This method is different from the conventional halo punchthrough stopper or TIPS<sup>(1)(2)</sup>, because we aim to change the channel impurity concentration by tilted II. The II processes before gate oxidation form the retrograde well as shown in Fig. 2 (profile for L<sub>g</sub>=0.2 µm). The gate oxide thickness is 3.5 nm. After gate etching, tilted II and LDD II (As) were done. Then the 60 nm oxide sidewall spacer was formed and deep source/drain II (As) was carried out. The final anneal was RTA at 1000°C for 10 seconds.

| Sample | Energy (keV) | Dose (cm <sup>-2</sup> ) |
|--------|--------------|--------------------------|
| 1.     |              |                          |
| 2      | 10           | 4×10 <sup>12</sup>       |
| 3      | 10           | 7×10 <sup>12</sup>       |
| 4      | 10           | 1×10 <sup>13</sup>       |
| 5      | 30           | 4×10 <sup>12</sup>       |

**Table 1.** Conditions for tilted II at  $\theta = 45^{\circ}$  in each sample.

### 3. Results and Discussions

Figure 3 shows the subthreshold I-V characteristics of Sample 2 with a gate length  $L_g=0.15$  µm. We obtained good turn-off characteristics and leakage currents for negative gate voltages were lower than Sample 1 having no tilted II.



Fig. 3. Subthreshold I-V characteristics of Sample 2 at  $V_d=0.1 V$ , 1 V, and 2 V. Gate length  $L_g$  is 0.15  $\mu$ m.

Figure 4 shows the threshold voltages  $V_{th}$  of the samples having different doses of boron by tilted II at 10 keV. In this figure, the gate length  $L_g$  is defined as the length of gate polysilicon measured by SEM. The lowering of  $V_{th}$  in Sample 2 is sufficiently suppressed, while Sample 1 suffers from the short channel effect. With the increase in the dose of tilted II, a larger reverse short channel effect (RSCE) appears.

Similar RSCE was obtained from simulations, as

shown in Fig. 5. In this simulation, the result of process simulation by SUPREM-4 (Fig. 2) was introduced into the 2-D device simulator, and we calculated the subthreshold characteristics by a drift-diffusion model. Although the V<sub>th</sub> lowering is a little larger in Fig. 4, the agreement between the experimental and simulation results is reasonable. Hence the RSCE in these devices is attributed to the increase in the channel impurity concentration for short  $L_g$ , which is intentionally caused by tilted II. It is not due to the redistribution of boron by diffusion processes<sup>(3)(4)</sup>.



Fig. 4. Experimental threshold voltage  $V_{th}$  at  $V_d=1 V$  versus gate length  $L_g$  for samples with different doses of boron at 10 keV.



Fig. 5. Simulated threshold voltage  $V_{th}$  at  $V_d=1$  V versus gate length  $L_g$ . The result of process simulation by SUPREM-4 (see Fig. 2) was used in the 2-D device simulation. Assumed conditions for tilted II and other processes were same as the fabricated samples.

In Fig. 6 we compared the experimental  $V_{th}$  values in Samples 2 and 5. The energy of tilted II used for Sample 5 is higher, and is close to the condition for punchthrough stopper formation<sup>(1)(2)</sup>. Sample 5 shows a large RSCE, although the dose is same as Sample 2. This shows a higher channel impurity concentration in Sample 5 for short L<sub>g</sub>. However, since V<sub>th</sub> lowering for L<sub>g</sub> near 0.1  $\mu$ m is larger in Sample 5, variation in the fabricated gate length results in larger V<sub>th</sub> fluctuation.

Figure 7 shows the drain current  $I_d$  in Samples 2 and 5. The  $I_d$  is larger in Sample 2 for a short  $L_g$ because of the RSCE in Sample 5, although  $I_d$  for a long  $L_g$  is almost the same. These results show that lowenergy tilted II is favorable for our method.



Fig. 6. Experimental threshold voltage  $V_{th}$  at  $V_d=1$  V versus gate length  $L_g$  for samples with different II energies.



Fig. 7. Experimental drain current  $I_d$  at  $V_d=V_g=2$  V in Samples 2 and 5.

### 4. Conclusions

We proposed a new method for controlling  $V_{th}$  of 0.1  $\mu$ m MOSFETs. The large-angle and low-energy tilted II after polysilicon gate formation can change the impurity concentration in the channel, which allows  $V_{th}$  control self-aligned to  $L_g$ . The effectiveness of our method was confirmed by both experiment and simulation. This method is more promising than the formation of a punchthrough stopper to suppress  $V_{th}$  fluctuations in MOSFETs with  $L_g=0.1 \ \mu$ m.

#### Acknowledgments

We thank ULSI technology laboratory and Process Development Division of Fujitsu for the fabrication of devices. We thank Drs. T. Imamura and N. Sasaki for their encouragement.

#### References

(1) T. Hori, IEDM Tech. Dig. (1994) 75.

(2) A. Toriumi, T. Mizuno, M. Iwase, M. Takahashi, H. Niiyama, M. Fukumoto, S. Inaba, I. Mori, and M. Yoshimi, Ext. Abstracts of SSDM, (1992) 487.

(3) H. Jacobs, A. v. Schwerin, D. Sharfetter, and F. Lau, IEDM Tech. Dig. (1993) 307.

(4) C. S. Rafferty, H.-H. Vuong, S. A. Eshraghi, M. D. Giles, M. R. Pinto, and S. J. Hillenius, IEDM Tech. Dig. (1993) 311