RIE-Lag Reduction by NH₃ Addition in Aluminum Alloy Etching under BCl₃/Cl₂ Chemistry

Michinari YAMANAKA, Hideo NAKAGAWA and Masafumi KUBOTA

Semiconductor Research Center, Matsushita Electric Industrial Co., Ltd.

3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka 570, Japan

Phone: +81-6-906-4897, Fax: +81-6-906-3451

The effect of NH_3 addition in Al alloy etching under BCl_3/Cl_2 chemistry is investigated. Optical emission spectral analysis and Auger electron spectroscopy analysis suggest that Al-N layer on Al alloy surface is formed by the reaction between Al and NH_3 . This Al-N layer reduces the reaction between Al and Cl radicals. The addition of NH_3 is effective not only in RIE-lag reduction but also in achieving anisotropic profile.

Introduction

In recent sub-quarter-micrometer aluminum alloy dry etching, RIE-lag reduction and anisotropic etched profile formation are strongly required. Here, RIE-lag is the phenomena that the etch rate depends on the space pattern width.

The reason why RIE-lag reduction is required is as follows. For the patterning less than 0.25 μ m, KrF excimer laser lithography is necessary. However, the resist thickness is thinner compared with i-line lithography from the depth of focus point of view, and the etching selectivity of photoresist to Al alloy is smaller than about 3. From this consideration, overetching time should be decreased.

An anisotropic profile of Al alloy etching is also required in order to prevent the void formation in subsequent filling process of dielectric material.

On Al alloy etching under BCl_3/Cl_2 chemistry, there have been several reports for RIE-lag reduction under BCl_3/Cl_2 gas chemistry (1), (2). However, they are restricted to phenomenological speculation and do not refer to the surface reaction between Al alloy and Cl radicals.

In this paper, we focus on the Al alloy surface reaction and propose a new gas chemistry of BCl₃/Cl₂/NH₃ to meet the requirements of both anisotropic profile and low RIE-lag. Discussion is made on the RIE-lag reduction mechanism by using an optical emission spectral analysis (OES) and an Auger electron spectroscopy analysis (AES).

Experimental

Experiments were made on a conventional RIE apparatus with 13.56MHz RF discharge. Etching samples were 6 inch Si wafers with TiN/Al-Si (1%) -Cu (0.5%)/Ti films sputtered on a 700 nm thick CVD SiO₂ film. The thicknesses of TiN, Al-Si-Cu and Ti layers were 40 nm, 600 nm and 25 nm, respectively. The sample wafers were patterned with the 1.0 μ m thick photoresist using i-line photolithography. Three kinds of gas chemistry, *i.e.*, BCl₃/Cl₂/NH₃, BCl₃/Cl₂/N₂ and BCl₃/Cl₂ were studied. The degree of the RIE-lag was measured from the photograph of scanning electron microscopy (SEM). Table 1 summarizes other etching conditions in this work.

Table 1	Etching Conditions
BCl ₃ Flow	50sccm
Cl ₂ Flow	50sccm
Pressure	200mtorr
RF Power	250W

Results and Discussion

Figure 1 shows SEM photographs of Al-Si-Cu etched profiles by 0.4 μ m line and 0.4 μ m space patterns. The addition of N₂ or NH₃ in BCl₃/Cl₂ gas chemistry brings about an anisotropic profile, where gas flow rate of N₂ or NH₃ is 50sccm, while BCl₃/Cl₂ gas chemistry without N₂ or NH₃ addition results in an isotropic profile. It is also shown that the addition of NH₃ is effective in reducing the residues (see arrows in Figs. 1 (b) and (c)).

Figure 2 shows a comparison of the etch rate as a function of the pattern width W in line & space (L&S) configuration among four kinds of gas mixtures. When $W=1.0 \ \mu$ m, the etch rate for BCl₃/Cl₂/NH₃ (50sccm) case is about the half of the etch rate for BCl₃/Cl₂ case and two third of the etch rate for BCl₃/Cl₂ case. The etch rate is sensitive to the NH₃ addition. The etch rate decreases much as W is smaller for W less than 1.0 μ m in BCl₃/Cl₂ case.

Figure 3 shows the comparison of normalized etch rate as a function of W among four kinds of gas mixtures. Etch rate of each pattern is normalized by that of $W=1 \mu$ m space pattern. In BCl₃/Cl₂ case, the etch rate decreases to 60% of $W=0.4 \mu$ m patterns. In N₂ addition case, the RIE-lag is reduced to some extent for W greater than 0.6 μ m, compared with BCl₃/Cl₂ case. In NH₃ addition case, the RIE-lag is greatly reduced. The normalized etch rate reduction is kept less than 20% even when $W=0.4 \mu$ m.

(a) BCl3/Cl2 only

(b) N₂ addition

(c) NH₃ addition

OES is made in order to examine the effect of NH_3 addition. Figure 4 shows the comparison of the emission intensity of Cl radical (775nm) which is a main etchant species. The emission intensity of Cl radicals in NH_3 addition case and N_2 addition case is normalized by that in BCl_3/Cl_2 case. By NH_3 addition, Cl radical is increased about 1.8 times of BCl_3/Cl_2 case. Also, by N_2 addition, Cl radical is increased about 1.3 times of BCl_3/Cl_2 case. This result shows that the addition of NH_3 gas increases the main etchant radical of Cl. This seems to contradict the result of Fig. 2 where the addition of NH_3 gas decreases the etch rate.

Figure 2 Comparison of Al alloy etch rate among four kinds of gas mixtures

Figure 3 Comparison of normalized etch rate among four kinds of gas mixtures

AES is used for the Al-Si-Cu surface analysis. Figure 5 shows the result of AES depth profile. Samples (a) and (b) are exposed by 50sccm NH_3 added plasma and 50sccm N_2 added plasma after the native oxide film removal, respectively. Pressure is 200mtorr, RF power is 250W and treatment time is 300s. It is observed that nitrogen concentration near the surface in NH_3 treatment sample is larger than that in N_2 treatment sample. It is considered that Al-N layer is formed near the Al alloy surface by the reaction between NH_3 and Al.

Figure 6 shows the schematic of the mechanism for the RIE-lag reduction. In BCl_3/Cl_2 gas chemistry, higher rate etching for wide patterns and lower rate etching for narrow patterns occur. This is because the amount of Cl radicals in wide patterns is larger than that in narrow patterns. On the other hand, in NH₃ addition plasma, Al-N layer is formed on the Al alloy surface by the reaction between NH₃ and Al. The chemical reaction probability between Al-N layer and Cl radical is reported to be small (3). Therefore, Al-N layer plays a role of the sidewall protection against Cl radicals. As a result, the reaction between Al-N layer and Cl radicals is not progressive without the ion bombardment. It is considered that the reduction of the RIE-lag is owing to the increase of the relative percentage of ion assist etching.

Figure 5 Auger electron spectroscopy measurement for nitrogen depth profile of samples after N_2 and NH_3 plasma exposure

Conclusion

The effect of NH_3 addition under BCl_3/Cl_2 gas chemistry on both RIE-lag and etched profile is studied in Al alloy etching. Optical emission spectral analysis and Auger electron spectroscopy analysis suggest that Al-N layer on Al alloy surface is formed by the reaction between Al and NH_3 . It is considered that this Al-N layer reduces the reaction between Al and Cl radicals. The addition of NH_3 is effective not only in RIE-lag reduction but also in achieving anisotropic profile.

for RIE-lag reduction

Acknowledgments

The authors would like to express their gratitude to Drs. K. Harafuji, S. Odanaka, M. Ogura and T. Takemoto for their encouragement and valuable discussion during this work.

References

(1) T. Sato, N. Fujiwara and M. Yoneda, Proceedings of Symposium on Dry Process 1994, p.61(1994).

(2) Tsu-An Lin and Ching-Hwa Chen, SEMICON Kansai 95 ULSI Technology Seminar Proceedings, p.194(1995).

(3) Muki Kagaku Zensho, X-1-1 Aluminum, p.261, (Maruzen press, Japan, 1975, in Japanese)