Velocity Overshoot and G_m Limitation in sub-0.1µm Fully-Depleted SOI-MOSFETs

Ryuji Ohba and Tomohisa Mizuno

Research and Development Center, TOSHIBA Corporation 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan

We have experimentally investigated the carrier velocity overshoot and the mechanism for the velocity degradation in fully-depleted SOI-MOSFETs. It is shown that, in sub-0.1 μ m SOI-nMOSFET, the velocity overshoot greater than 1×10^7 cm/s is realized at room temperature when the gate bias is low. The velocity degradation due to the self-heating effects is found to be smaller than the degradation caused by the increase of the vertical field. Moreover, it is suggested that the velocity degradation is also caused by the carrier-carrier scattering at high gate drive in addition to the above degradation mechanism. Consequently, in sub-0.1 μ m SOI-nMOSFETs, the transconductance can be improved by the velocity overshoot for a low supply voltage.

1 Introduction

To get a higher current drive in less than $0.1\mu m$ MOSFETs, it is very important to achieve a velocity overshoot exceeding 1×10^7 cm/s at the source edge. In our previous work [1], we have shown the possibility of the velocity overshoot in fully depleted sub- $0.1\mu m$ SOI nMOSFETs, when the selfheating effects are suppressed.

In this study, we have experimentally verified that the velocity overshoot at the source edge can be realized in 0.08μ m fully depleted nMOSFETs at room temperature in the low gate bias region, where the self-heating is suppressed. Based on the experimental results, we have quantitatively clarified the physical mechanism of the carrier velocity degradation.

2 Experimental

 0.08μ m fully depleted SOI CMOS devices were fabricated on SIMOX wafers. The gate-electrode was patterned by EB lithography. The gate oxide thickness was 44Å, and the buried oxide thickness was 1000Å. The SOI layer thickness was 400Å. The Ni silicide structure was formed, and the source/drain parasitic resistances were very low (~300 $\Omega \cdot \mu$ m) in spite of thin SOI. The channel mobility was very high due to the low impurity concentrations. The peak values of mobility were 820 and 200 cm²/V · s for electron and hole, respectively.

3 Results and Discussion

A. Velocity Overshoot

In this study, we obtained the carrier velocity

near the source by $v(V_g) = G_m(V_g)/C_{gs}(V_g)$, where G_m is the measured transconductance and C_{gs} is the gate-to-source capacitance [2]. We can investigate the carrier velocity in the self-heating free condition, that is in $V_G \sim V_{TH}$. Figure 1 shows C_{gs} and G_m and the gate-to-drain capacitance C_{gd} of 0.08μ m SOI-nMOSFET at Vd=1V. The inset shows the lattice temperature T_L obtained by the gate electrode resistance method [3]. G_m is very large ($G_m \max = 600$ mS/mm) owing to the low S/D resistance. The capacitance characteristics are almost the same as those of the long channel devices, and indicate the existence of the pinch-off region even in sub-0.1 μ m MOSFETs [2].

Figure 2 shows the carrier velocity $v = G_m/C_{gs}$ in 0.08 and 0.1 μ m SOI-MOSFETs. It should be noted that, in $L_{eff} = 0.08 \mu m$, the electron velocity exceeds $v_{sat} = 1 \times 10^7$ cm/s ($\sim 1.2 \times 10^7$ cm/s) in $V_q \sim V_{th}$, i.e. the self-heating free conditions. This clearly shows that the velocity overshoot can be realized in sub-0.1 μ m fully depleted SOI-nMOSFET when the gate bias is low, whereas the velocity overshoot is not observed in $L_{eff} = 0.1 \mu m$, as shown in Fig.2(b). Moreover, the electron velocities are almost independent of V_d in Fig.2, and this means the pinch-off potential is not affected by V_d . On the other hand, the maximum hole velocity is at most 6.4×10^6 cm/s in $L_{eff} = 0.08 \mu$ m at V_d =-1.5V and is about 60 % of the electron velocity. This is because hole effective mass is greater than that of electron.

B. Velocity Degradation Mechanism

In this section, we introduce the intrinsic velocity, v_i obtained by the intrinsic G_m considered

the source/drain parasitic resistance. As shown in Fig.2, v degrades in the higher V_G region. To elucidate the mechanism of the degradation, we experimentally investigated the lattice temperature T_L and the vertical electric field E_{eff} dependence of v_i . Figure 3(a) shows the experimental data of T_L dependence of the intrinsic v_i obtained in $0.13\mu m$ bulk-MOSFETs by using the hot chuck. The velocity degradation in Fig.3(a) is due to the mobility reduction caused by the increase of T_L . We obtain $v_i \propto T_L^{-0.78}$ for $L_{eff} = 0.13 \mu m$ by the power curve fit. Figure 3(b) shows E_{eff} dependence of v_i translated from the experimental data of V_{SUB} dependence of v_i in 0.08 and 0.13 μ m SOI-nMOSFETs. The degradation in Fig.3(b) is due to the mobility reduction caused by the increase of E_{eff} . We find $v_i \propto E_{eff}^{-0.11}$ for $L_{eff} = 0.13 \mu m$ by the power curve fit. For the T_L and E_{eff} dependence, we have obtained almost the same power laws in all ranges of the gate drive, that is both the phonon and the roughness scattering regions.

Using these power laws, the electron velocdegradation is estimated for 0.13µm SOIity nMOSFET, as shown in Fig.4. Figure 4(a) shows the velocity degradation at $V_{SUB} = 0$ V. The velocity degradation due to the self-heating is found to be smaller than that caused by the increase of E_{eff} . For low gate drive, v_i degradation can be explained by both T_L and E_{eff} dependence of v_i , as shown as the open circles in Fig.4(a). However, notice that the degradation of the intrinsic v_i is larger than the degradation caused by both the selfheating and the increase of E_{eff} . This indicates that some anomalous scattering degrades the velocity. Note that the discrepancy becomes larger at higher V_G . This discrepancy is also enhanced at applied V_{SUB} , as shown in Fig.4(b). Since each of the V_G and V_{SUB} applications increases the electron concentration per unit volume in the inversion layer, these suggest that the carrier-carrier scattering degrades the velocity [4].

Figure 5 shows the estimated components of the velocity degradation in 0.13μ m SOI-nMOSFET at $V_G - T_{TH} = 0.8V$. It is shown very clearly that the degradation by some anomalous scattering, maybe e-e scattering, increases monotonically with the application of V_{SUB} , whereas both the T_L and E_{eff} dependence of the degradation is almost constant.

Figure 6 shows the estimated components of v_i degradation for 0.08μ m SOI-nMOSFETs in which the velocity overshoot is observed. We find that v_i at $V_G - V_{TH} = 1.65$ V degrades remarkably down to 58% of that at $V_G - V_{TH} = 0$ V. In shorter L_{eff} , the self-heating effects are more remarkable. However, in Fig.6, the degradation caused by the self-

heating is still small and about one-third of the total v_i degradation. The other two-thirds of the total degradation consists of the degradation components of E_{eff} and e-e scattering, which are not characteristic of the SOI structure but general for MOSFET. The E_{eff} and e-e scattering components increase greatly with V_G . This indicates, in a high V_G region, there will be no remarkable improvement in the transconductance even if the self-heating is suppressed completely. Since, however, in the future, low power performance will be a main application of MOSFETs, the velocity degradation components at high V_G will not be a serious problem. Therefore, in sub-0.1 μ m SOI-nMOSFETs, the velocity overshoot is very useful for high performance at a low supply voltage.

4 Conclusion

We have experimentally studied the carrier velocity $v = G_m/C_{gs}$ and the velocity degradation mechanism in fully depleted SOI-MOSFETs. We found that, at low V_G , the velocity overshoot over 1×10^7 cm/s is realized at room temperature. Moreover, it was experimentally shown that the velocity is restricted not only by the increase of both T_L and E_{eff} but also by another mechanism, perhaps, carrier-carrier scattering. Since the velocity restriction increases remarkably with V_G , a higher G_m will be not realized at large V_G by using the velocity overshoot effect, even if the self-heating is suppressed completely. However, MOSFETs will be used at low supply voltage more and more in the future. Hence, under the low voltage conditions, we can expect a high performance owing to the velocity overshoot effect in sub-0.1µm SOI-nMOSFETs.

Acknowledgment

We would like to thank K.Ohuchi, S.Kawanaka, H.Niiyama, T.Shibata, A.Nishiyama and M.Iwase for their stimulating discussions and useful assistance in fabrication. Y.Ikawa, S.Manabe, N.Arikado, Y.Ushiku, R.Katoh, S.Watanabe and M.Yoshimi are also thanked for their support.

References

- K.Ohuchi et al., Jpn.J.Appl.Phys. 35, 960 (1996).
- [2] H.Ishiuchi et al., IEEE Trans. Electron Devices ED-32, 2238 (1985).
- [3] L.T.Su et al., IEEE Trans. Electron Devices ED-41, 69 (1994).
- [4] S.Takagi et al., IEDM Tech. Dig., p711 (1992)

Fig.1 Gate-to-source capacitance C_{gs} , gate-to-drain capacitance C_{gd} and measured transconductance G_m vs. V_G in $L_{eff}/W_{eff} = 0.08/10\mu$ m SOInMOSFET, where $V_D = 1$ V, $V_{sub} =$ -8.5V and $T_{SOI} = 400$ Å. The inset shows the lattice temperature T_L raised by the self-heating as a function of V_G .

(a) Intrinsic carrier velocity v_i degradation as a function of T_L in bulk-MOSFETs. The velocity is obtained for 0.13 μ m bulk-MOSFETs at the same $V_G - V_{TH}$. (b) Intrinsic carrier velocity v_i degradation as a function of E_{eff} in 0.08 μ m and 0.13 μ m SOI-nMOSFETs. E_{eff} is calculated by the one dimensional model as a function of V_{SUB} and $V_G - V_{TH}$. The velocity is obtained at the same $V_G - V_{TH}$ (~ 0.1V).

Fig.5 V_{SUB} dependence of the estimated components of the velocity degradation in 0.13 μ m SOI-nMOSFET at $V_D = 1$ V. v_i degradation at applied V_{SUB} is compared with that at $V_{SUB} = 0$ V.

Fig.2 Carrier velocity v vs. $|V_G - V_{TH}|$, where $T_{SOI} = 400$ Å, $|V_{SUB}| = 8.5$ V. (a) Carrier velocity in $L_{eff} = 0.08 \mu$ m. Electron velocity exceeds 1×10^7 cm/s near V_{TH} . (b) The carrier velocity in $L_{eff} = 0.1 \mu$ m.

Fig.4 Intrinsic electron velocity degradation mechanism in 0.13µm SOI-nMOSFET at $V_D = 1$ V. The intrinsic v_i is obtained by $v_i = G_{in}/C_{gs}$, where G_{in} is the intrinsic transconductance. v_i degradation is compared with the degradation due to the self-heating only, the degradation due to the E_{eff} increase only and the degradation due to both the self-heating and the E_{eff} increase. (a) $V_{SUB} = 0$ V, and $v_i \max = 8.5 \times 10^6$ cm/s. (b) $V_{SUB} = -10$ V, and $v_i \max = 7.1 \times 10^6$ cm/s.

Fig.6 Gate drive dependence of the estimated components of electron velocity degradation in 0.08 μ m SOI-nMOSFET. v_i degradation at applied $(V_G - V_{TH})$ is compared with that at $(V_G - V_{TH}) = 0$ V.