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1. Introduction

High quality interpoly dielectric is required to improve
data retention characteristics in nonvolatile memories [1].
Although stacked ONO structure is widely used, it suffers
from its thickness scaling limitation, high process
temperature, and degradation of tunnel oxide due to Si;N;
stress [1],[2]. Moreover, polyoxide on POCl; doped poly-Si
has poor electrical properties due to its rough
polyoxide/poly-Si interface [3]. Thus, research on high-
quality low-stress thin polyoxide on doped poly-Si is greatly
needed. In this paper, we present low temperature N,O-
plasma oxide grown on in-situ doped poly-Si to improve
surface roughness and long term reliability.

2. Experiments

To investigate the electrical characteristics of N,O-plasma
polyoxide, capacitors with n"-poly-Si floating gate/oxide/n*-
poly-Si control gate structure were fabricated. /n-situ doped
a-Si film of 100nm thickness for the floating gate electrode
was deposited using SiH; and PH; and annealed at 900°C.
Then, ECR N,O-plasma polyoxide of 12nm thickness was
prepared at 400°C, 1.4mtorr and 600W. Control thermal
polyoxide was also grown at 850°C in dry O, ambient. After
the control gate electrode of 300nm was patterned, aluminum
contacts were opened on both the n"-poly-Si gates and
annealed at 400C in 10% Ha/N,.

3. Results and Discussion

Fig. 1 shows J-E curves of thermal polyoxide and N,O-
plasma polyoxide and Fig. 2 shows their cumulative
breakdown field. N;O-plasma polyoxide has lower leakage
current, higher breakdown field, and better polarity-
independence, which reveals that its bulk property and
interface roughness are superior to those of thermal oxide.

To investigate the surface morphology of poly-Si film,
AFM measurements were performed. Fig. 3 shows the AFM
images of poly-Si film before oxidation, after thermal
oxidation, and after ECR N;O-plasma oxidation and
corresponding rms value of roughness are 6.4nm, 9.6nm, and
4.6nm, respectively. N,O-plasma oxidation does not degrade
surface roughness of poly-Si, furthermore, renders even a
smoother interface than the original surface.

Fig. 4 shows the gate voltage shifts of thermal polyoxide
and N,O-plasma polyoxide under positive and negative
constant current stress of ImA/cm® and 10mA/cm?,
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respectively. N.O-plasma polyoxide exhibits much smaller
voltage shifts for both polarity stress in spite of 10 times
larger stressing current. In addition, N;O-plasma polyoxide
shows significantly lower gate voltage shift when electrons
are injected from the floating gate electrode.

To study the long term reliability of polyoxide, cumulative
charge-to-breakdown(Qbd) characteristics were investigated.
Fig. 5 shows that N;O-plasma polyoxide has Qbd up to
10C/em?, which is 30 times larger than thermal polyoxide.
Through simple one-step N:O-plasma oxidation, high quality
polyoxide comparable to optimized ONO interpoly dielectric
can be obtained [4].

Fig. 6 shows the SIMS depth profiles of N,O-plasma
polyoxide. Nitrogen atoms are pile-up at the polyoxide/poly-
Si interface and form a nitrogen-rich layer. The chemical
bonding structure of incorporated nitrogen atoms are studied
by XPS analysis. The binding energy of 397.8eV as shown
in Fig. 7 means that there exist strong Si-N bonds which has
much stronger endurance under electrical stressing than Si-O
bonds. Therefore, the lower trapping rate and larger Qbd is
mainly attributed to not only the nitrogen-rich layer but also
the smooth interface.

4. Conclusions

A simple growing technique of interpoly oxide using ECR
N;O-plasma has been investigated. N,O-plasma polyoxide
has a low leakage current and large Qbd, which leads to
good data retention and high endurance properties when used
as interpoly oxide of flash memories. Combination of in-situ
doped a-Si with N,O-plasma oxide is a good candidate for
interpoly dielectric structure of future high density
nonvolatile memories.

We will present the retention and endurance character-
istics of NVMs at SSDM’97.
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Fig. | Current density versus electric filed plots for thermal oxide ~ Fig. 4 Gate voltage shifis during constant current stressing with

and N;O-plasma oxide on poly-Si (deposited in in-situ doping ImA/em” for thermal polyoxide and 10mA/cm™ for N;O-plasma

followed by thermal annealing for crystallization). polyoxide.
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Fig. 2 Cumulative weibull distribution of breakdown field for Fig. 5 Weibull plots of charge-to-breakdown of capacitors with
thermal polyoxide and N>O-plasma polyoxide thermal polyoxide and N,O-plasma polyoxide, measured at current
density of 10mA/cm’.
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Fig. 6 SIMS depth profiles of N2O-plasma polyoxide. The vertical
dotted line indicates Si/SiO; interface.
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Fig. 3 AFM images of surface of poly-Si (a) without oxidation, (b)
after thermal oxidation, and (c) after N,O-plasma oxidation. The
corresponding rms roughness are 6.4nm, 9.6nm, and 4.6nm
respectively.
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Fig. 7 XPS N(1s) intensity of NO-plasma oxide at the interface.
Inset : depth profile of N(1s) intensity.
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