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1. Introduction
The effective carrier mobility lref f is one of the most

significant and essential. properties for understanding var-
ious transport phenomena in MOS inversion layers and
has a.lso been studied in SOI systems [t-e]. For extremely
thin SOI structures having a Si layer thickness t5; of less

than approximately 10 nm, however, there have been no
theoretical studies of. p"f! and the experimental results

[5, 6] are insufi.cient for understanding various sca,tter-
ing mechanisms. Thus we studied phonon-limited elec-
tron mobility po6 of (100) Si inversion layers in such thin
SOIs at 300 K by using a relaxation time approximation
a,nd a one-dimensional self-consistent calculation.

2. Electronic Structure and Mobility
For all structures, the concentration of acceptors Na

is taken to be 1 x 1015 cm-3 in every Si region. AII
calculations for single-gate SOI structures (Figs. 1-6)
were performed with a buried oxide thickness of 100 nm
and a back-gate voltage of 0 V.

Figure 1 shows some results of the self-consistent cal-
culation for SOI (tsr = 3,5 and 10 nm) and bulk Si in-
version regions at the effective vertical electric field E"S 7
of 5 x 105 Vcm-l. The electronic structures of SOI with
f5; of 10 nm and bulk Si inversion regions a,re almost the
same, but the electronic structures of SOI Si inversion re-
gions with t5;=3 and 5 nm are appa,rently diferent from
those of the bulk Si inversion region. Figure 2 shows
the lowest four subba,nd bottom energies in SOI Si inver-
sion regions at E"tf = 1 x 10s Vcm-l as a function of
t5;. The subbands of the lower ladder (doubly degener-
ate valleys) are labeled with indices 0, L, 2,.. . and those
of the higher ladder (fourfold degenerate valleys) are la-
beled with indices 0', l',2',.. ., as usual. Fig. 3 shows the
electron population in each of subbands shown in Fig. 2.
As a result of energy separations increasing for thin ts;,
the electron population in the lowest subband (0) grows
rapidly and those in the higher subbands (1, 2 and 0')
decrease with the reduction of ts;

Figure 4 shows the phonon-limited mobility at 8"7 y
of 1x 105 Vcm-l as a {unction of t5;. The mobility is nor-
malized by the bulk Si inversion layer mobility ca.lculated
at the sarne E.f f. The scattering rate of electrons was
calculated by a conventional procedure [7-tO] employing
phonons [tt] in bulk Si. It can be seen from Fig. 4 that
for t5; of more than approximately 5 nm the mobility is
almost equal to that of bulk Si inversion layers though a
slight increa.se in mobility can be seen around t5; of 10

nm. For the thickness of less than 5 nm, however, the mo-
bility /rplr increases to more than 10% greater than that

B-6-2

of bulk Si inversion layer at 15; of = 3 nm and decreases

rapidly with the reduction of 1s;. Figure 5 shows the mo-
bilities of the lowest four subbands as a, function of 15;.

The lowest-subband mobiiity tto is always higher than
other subband mobilities and, for extremely thin t5;, all
subband mobiiities decrease monotonically with dimin-
ishing ls;. Figures 3 and 5 clearly indicate the reason for
the increase of the total mobility Fpn for t.si = 5 - 3 nm.
Since the total mobility is determined by averaging sub-
band mobiiities weighted by their fractions of electrons,
the increase of Fpn is attributed to the rapid increase of
the fraction of electrons in the lowest subband (0) hav-
ing a higher mobility tha.n other subbands. On the other
hand, for t5; of less than s 3 nm, the reduction of the
subband mobilities is responsible for the decrease of the
total mobility Fpt. This reduction is due to a.n increase
in the scattering rate caused by a reduction of the spatial
widths of the subbands. Such a scattering-rate increase
has been shown for a simple square-well potential with
inflnitely high walls [2, a].

Figure 6 shows the lowest-subband (0) mobilities lim-
ited by intravalley sca.tteritrs &g,iot"o, by intervalley scat-
tering lto,inter and by both scatterings /ro as a function
of t5; at EsSy of 1 x 105 Vcm-I. Interva^lley phonon
scatterings are suppressed around 15; of 3 nm. However,
intravalley phonon scattering is dominant and the sup
pression is insignificant in the total subband mobility ps.

Figure 7 shows the mobility of double-gate SOI MOS-
FETs with symmetrical structures as a function of ts;.
The qualitative features are similar to those of singl+gate
SOI MOSFETs though an increase in mobility around 15;

of 10 nm is more prominent.

3. Conclusion
We have studied phonon-limited inversion layer elec-

tron mobility in extremely thin (100) Si layers of SOI
MOSFETs at 300 K using a relaxation time approxima-
tion. For a thickness of less than approxima.tely 5 nm,
the mobihty ppn increases to a ma.ximum at t5; of t 3

nm and decreases monotonically with diminishing t5;.
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Potentials,subband bottom energies and electЮ n

density distributions of SOI Si and bulk Si inversion regions at

E"6 of 5xld Vcm-l. Full circles, open circles, open squares

and open triangles denote respectively the subband bottom

energies of SOI with tgi of 3, 5 and l0 nm and of the bulk Si

inversion regions. The Fermi energy is taken to be 0 eV.
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Fig。 2 Bottom energies of the lowest four subbands(0,1,

2 and O)aS a hnction of Si layer thickness、 i tt Eeff Of

lx105 vcm‐ 1.The energles are measured from the Femi

energy.
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Fig. 4 Phonon-limited electron mobility at E"6 of lxld
Vcm-l as a function of t5i. The mobility is normalized by the

bulk Si inversion layer mobility calculated at the same E"6.
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Fig. 3 Fractions of electrons in the lowest four subbands

(0, l, zand 0') as a function of tgi at E"6of lxld Vcm-l.
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Fig. 5 Electron mobilities of the lowest four subbands (0, l,
2 and 0') at E"6 of lxld Vcm-l as a function of tgi. .
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Fig. 6 The lowest-subband (0) mobilities limited by intravalley
scattering /. gjntra, by intervalley scattering F g,inter and by both

scatterings 1r 0 as a function of tgi at E"6of lxld Vcm-l.
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Fig. 7 Phonon-limited electron mobility of double-gate SOI

MOSFETs with symmetrical structures at E"6of lxld Vcm-l as a

function of t5i. For symmetrical double-gate SOI structures, Eeff =

(elZ e g)(N;rrn2+N4tgi), where N6" is the number of electrons

per unit area in the inversion layer. The mobility is normalized by

the bulk Si inversion layer mobility calculated at the same E"gg.
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