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1. Introduction
This paper proposes the concept of the quantum Hopfield

network, a quantum version of the classical Hopfield network.
This concept provides an efficient way of solving
combinatorial problems, including nondeterministic
polynomial-time complete (NP-complete) problems, which
are dfficult for conventional computation models.

Introducing quantum mechanics into computation may
produce the capability for massive parallel processing. The
quantum generalization of the Turing machine, known as the
quantum Turing machine,l) is an example. The quantum

Turing machine can perform ultrahigh-speed computation
because it can accept as input a coherent superposition of
many different data and subsequently perform a computation
on all of these input data simultaneously. This parallelism can

be used to quickly solve several problems that are dfficult
with the classical Turing machine, such as factoring and
discrete logarithms.

Is this type of quantum effect exclusive to the TUring
machine? The author does not think so. Various other
computation models besides the Tiring rnachine are known,
and it is likely that the parallelism of each of them can be
enhanced with the application of quantum mechanics. This
paper takes the Hopfield network as an example and shows
that quantum parallelism can be obtained in this computation
model as well. The author hopes that this will stimulate the
thinking of readers involved in developing novel quanturn

devices.

2. The Hopfreld Network as a Tool for Solving
Combinatorial Optimization Problems
The Hopfield network is a computation model for solving

combinatorial optimization problems that employs the
operation of a specific reculTent network. (Ilereafter we call
the recunent network itself a Hopfield network.) The concept
of a Hopfield network is illustrated in Fig. L. The network
consists of threshold elements and connections. The
connection weights Wt, and 0; cm be given any desired
value, with the restrictions that ,yri = Wii and Wri = 0. The
outputs Vraf the threshold elements i wrap around to become
the inputs to the network. Each threshold element i produces

an output "1'r if the weighted sum of inputs @WriX; + 0r ) is
positive and an output nOu if the weighted sum of inputs is
negative. The point of this network is that, starting at a given

initial position, it changes its internal state (a set of the
outputs V, dthe threshold elements) to minimize the value of
the energy function defined by

E =-ll2>WijV,Vi-\0tV,. (1)
l+J l

B-8-3

By adjusting the connection weights we can relate the energy
function of the network to the cost function of a given
optimization problem. Ilr this way, we can find the solution to
the problem simply by observing the final state that the
network reaches. For details, see Ref. 2.

Unfortunately, the correct solution cannot always be
assured. This is because the basic Hopfield network has many
states of locally minimum energy, in addition to the globally
minimum state. In most cases the network will get stuck in a
local rninimum and a solution will not be reached. This is an
unavoidable drawback in the Hopfield network and has
limited its field of application. (Ihis local-minima problem is a
natural result of the fact that each occurrence of state
transition in the threshold elements is independent of all
others. It is unavoidable to the extent that we are tied to the
classical concept of the Hopfield network.) To overcome this
problem, we here consider designing a Hopfield network with
single-electron circuits.

3. Single-Electron Circuit Struchrre for Implementing the
Hopfreld Network
The single-electron circuit changes its state to decrease its

free energy. We can make use of this property to design a
Hopfield network (see Ref. 3). The author proposes here a
likely circuit design, as illustrated in Fig.2. A tunnel junction
with an excess electron is used as a threshold element @ig.
4a)); we define the state of the tunnel junction as "1." if the
electron is on the right of the junction and as uOu if it is on the
leff. The connection between two tunnel junctions can be
established by a pair of coupling capacitors (pig. 4b); the
connection weight can be set to either positive or negative,
depending on the layout of the capacitor coupling. The
overall configuration of the network is illustrated in Fig. 2(c).
(An excess electron is also set on each bias node.) A ground
capacitance exists between each node and ground (not
illustrated here for simplicrty). A sample set of capacitance
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Fig. 1 Concept of the Hopfield nerwork.

306



parameters is given in the figure.
Starting from a given initial position, the circuit changes its

internal state (the arrangement of electrons) to minimize its
free energy.The author has confirmed that the free energy for
this circuit is given by

E=A-L|Z)8,,44->qN, , Q)i+i' i

where N, is the state of each tunnel junction, ffid that the
coefficients A, Bil, and q can be set at any desired value,
based on the connection pattern and the capacitance values of
the tunnel junctions, connection capacitors, and ground
capacitors. In this way we can be certain that the circuit will
operate as a complete Hopfield network.

The internal state of this circuit is expressed by a set of the
states of the tunnel junctions. For the sample circuit in Fig.
2(c), the internal state is expressed as (Nr , Nz , N, ). The
energy values for all the possible internal states are compared
in Fig. 3. The global rninimum is state (0, 0, 0). Each solid
arrow in the figure indicates the possible occurrence of a
state transition due to a tunneling event (we here assurne zero
temperatures and therefore no energy excitation). States (1,0,
1) and (0, 1, 1.) have several incoming paths but no outgoing
path; therefore these two states act as a local minimum. In
this sense, these conditions do not differ from the classical
Hopfield network.

4. Quantum Operation in the Hopfreld Network, Using the
Co-Thnneling Phenomenon
The local-minima problem comes from the fact that each of

the electron tunnelings through the tunnel junctions occurs
independently. To overcome this, we consider making good
use of quanturn phenomena. The point is that the novel
Hopfield network can be attained if we can sornehow build a

single-electron Hopfield network such that the co-tunneling
phmommon occurs frequently. Co-tunneling is a

phenomenon in which two or more tunneling events occur
simultaneously in a form of coherent combination. Through
the co-tunneling phenomenon, the sample circuit in Fig. 2(c),
for example, can change its state from (1, O 1) and (0, 1, 1.) to
the global minimum (0, 0, 0), as illustrated by the dashed

arrows; thus the local-minima problem disappears. Co-
tunneling can be induced by increasing the tunnel junction
conductance, so our concept is realizable.

We call this type of single-electron network a quantum
Hopfield network. kr this quantum Hopfield network, it is

certain that, starting at a given initial state, the global
minimum state can always be established. (Put another way,
the network calculates simultaneously many energy values
for all possible combinations of the junction states to find the
minimum energy state. Therefore quantum parallelism is
obtained, though in a form different from that of the quantum
Turing machine.) Using this property, we can solve various
combinatorial problems, including M-cornplete problems,
without being troubled by the local-minima problem.

An open question is whether it would be practical to build
actual devices to perform such quantum network operation,
or whether they would forever remain a thing of the
irnagination. Although various problems lie ahead, the author

believes that theoretical and technological progress will
sooner or later make such devices feasible. When the first
quantum Hopfield network is built, we will then acquire a
computing tool that can be used for solving M-complete
problems efficiently a task that is dfficult for every
computation machine known today.
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Fig.2 Design of the single-electron Hopfield network.
(a) Tunnel junction as a threshold element, (b) positive and

negative connections, (c) a sample configuration'of the network.
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