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Invited
Self-Assembling Quantum Circuits with Clusters, Molecules

and Quantum Dots

1 Introduction
We have proposed a number of nanoelectronic architec-
tures for collective computation, signal processing and
Boolean logic [1-2]. All of these architectures can be
realized with a uniform two dimensional a,rray of quan-
tum dots or metallic clusters (2-30 nm diameter) self-
assembled on the surface of a double-barrier resonant tun-
neling diode and electrically linked by conducting conju-
gated molecular wires. These circuits ca,n perform pow-
erful computational and signal processing functions such
a.s neuromorphic associative memory, image processing,
Boolean logic and efficient solution of combinatorial op-
timization problems. The versatility of the architecture
and the relative ease of synthesis make these entities -
which we have termed "artificial quantum solids" - most
attractive for quantum functional systems.

2 Quantum circuits

Quantum circuits have been an active area of research in
the present decade lL-21. Interest in this field stems from
the popular notion that classical circuit paradigms would
be inadequate for architectures of the next century. At
the same time, adva^nces in nanosynthesis based on self-
assembly has opened up a new vista and opportunities
for chemically "growing" circuits (as opposed to fabricat-
ing them piece by piece as in conventional lithography)
abound. Our proposed architecture takes advantage of
the merits of self-assembly and is extremely powerful and
versatile. To our knowledge, this is the first proposal of
its kind.

3 Basic architecture
The basic building block of our architectures is shown in
Fig. 1. Each dot has a conductive coupling with its near-
est neighbor established via molecular wires. The theo-
retical underpinnings and how this system ca,tr perform
Boolean logic operations, associative memory functions,
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image processing and combinatorial optimization, have
been described in numerous publications [1,2] and will
not be repeated here. Instead, we will concentrate here
on possible routes to synthesis.

4 Self-assembly

The primary features of the basic system in Fig. 1 are
1) a uniform two dimensional array of nanometer-sized
metallic islands with electrical connection between near-
est neighbors, 2) low resistance coupling of the islands
with the resonant tunneling structure underneath, and 3)
a thin film resistive layer to provide bias connections to
the islands.

Two dimensional arrays of metallic islands can be self-
assembled on an arbitrary substrate in two different ways.
A thin film of aluminum or gold can be evaporated on the
substrate and electropolished under suitable conditions to
produce the "egg-carton" pattern shown in Fig. 2 [J]. The
troughs are removed by careful etching leaving behind the
crests to form a periodic array of islands on the surface.
These could be used as a natural mask to isolate mesas in
the substrate underneath. The islands have a diameter of
- 30 nm with inter-island spacing of 150 nm. Adjacent
islands can be linked with molecular wires bridged by gold
clusters.

Another independent approach involves self assembling
a two-dimensional close-packed array of 4-nm diameter
gold clusters from colloidal suspensions of neutral encap-
sulated clusters [4]. A transmission electron micrograph
of a gold cluster array is shown in Fig. 3. The intercluster
electrical linking can be achieved by exposing the array
to conjugated organic molecules (e.g. biphenyl-dithiol)
with end-groups that bind to gold [a]. The measured in-
plane conductance of linked cluster arrays, thus formed,
exhibit strong single electron charging efiects at room-
temperature consistent with predicted resistances and ca-
pacitances of these wires [5, 6].

Low resistance coupling of the islands to the substrate
underneath can be achieved if low-temperature grown
GaAs (LTG:GaAs) is employed in the resonant tunnel-
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Figure l: The basic nanoelectronic architecture consists

ofa uniform twO_dilnensional array Ofmetallic islands self―

assembled on the surface Of a resonant tunneling diode

structure.All input/output operations tte performed On

peripheral islands;this elinlinates the need to access in―

teriOF iSlandso A subset of the peripheral nodes are used

to feed external current which provides a versatile pro―

gramnling capability for neurJ network functionso Not

shown in this igure(fOr the sake of darity)鉗 e the molec―

ular wires which electrically link nettest―neighbor islands。

The wires can have either ohnlic or non― ohΠlic conduction

characteristics.

ing structureo The islands can form Ohnlic contacts with

LTG:GaAs without high tempertture Jloying i71 which

could have caused size and shape distortion,difFusion on

the surface, Or chenlical reaction of the mOlecules with

the surfaceo LTG:GaAs is chenlically stable and resists

oxidation.

Finally, the thin fllln fOr bias connection is easiest to

synthesize and is realized by growing a layer at low terrl―

pertture in tt MBE chamber p].
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Figure 3: TransIIlission electron Πlicrograph of a rnolecu‐

larly linked array Of 4-nm diameter gold clusters.

70

60

０

０

０

０

５

４

３

２

∽
』
①
´
①
【目
Ｏ
ｄ
。
Ｚ


